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Efficient simulation of contact is of interest for numerous physics-based animation applications. For
instance, virtual reality training, video games, rapid digital prototyping, and robotics simulation are all
examples of applications that involve contact modeling and simulation. However, despite its extensive
use in modern computer graphics, contact simulation remains one of the most challenging problems in
physics-based animation.
This course covers fundamental topics on the nature of contact modeling and simulation for computer

graphics. Specifically, we provide mathematical details about formulating contact as a complementarity
problem in rigid body and soft body animations. We briefly cover several approaches for contact
generation using discrete collision detection. Then, we present a range of numerical techniques for
solving the associated LCPs and NCPs. The advantages and disadvantages of each technique are further
discussed in a practical manner, and best practices for implementation are discussed. Finally, we conclude
the course with several advanced topics, such as anisotropic friction modeling and proximal operators.
Programming examples are provided on the course website to accompany the course notes.
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PREFACE
Why a SIGGRAPH course on contact and friction simulation? The answer, quite simply, is that
it is an important topic. As a classic problem in physics-based animation, contact simulation
has been the focus on many scientific works over the past several decades in computer graphics.
Furthermore, there is a demand for friendly teaching material about the topic since it is difficult
to approach for non-specialists.
Contact and friction simulation in computer graphics field has evolved a lot since the 1980s.

During this time, a lot of effort has gone into uncovering fast and robust methods, and utilizing
hardware such as GPUs. The performance and robustness of these methods now enables
techniques developed in computer graphics to be deployed into other fields. For instance,
robotics and medical simulation are two fields where computer graphics simulations are
now pushing the limits of the state-of-the-art. Digital prototyping, learning and training are
other important application contexts, and there is still a need for advances here. Currently,
differentiable physics, rich friction models, machine learning-based physics, soft-rigid and
soft-soft body contact are open topics that the research community is pursuing. We hope these
notes will give the next generation of researchers the necessary foundation to begin solving
these challenges.
These course notes have been assembled over a period of a couple of years. Topics have

been introduced and pulled out continuously in this process, and we will likely continue to do
so in future versions of these course notes. A few topics kept coming back to us as being more
fundamental, in that they form the foundation for understanding a lot of recent work in the
field. Hence, this material makes up the core of the course notes, and they are mainly about
understanding the physical models and numerical methods. By that we mean the mathematical
equations we write up when we describe the models, along with the methods we apply to
compute solutions for our models. Ideally, we try to keep models and methods separate, as they
should be. Historically, a huge part of the field is devoted to fast and robust numerical methods,
and in particular constraint-based approaches, such as the ones based on complementarity
problem formulations, make up a big part of the picture. Therefore, we devote a lot of effort to
give a firm understanding of this popular approach.
It is impossible to cover all topics related to contact and friction simulation in a three-hour

SIGGRAPH course, and we had to cut out many topics in order to remain relatively concise.
For instance, in this version of the course we ignore impulse-based methods that use collision
laws and event propagation. The coverage of collision detection is also limited to just the
principled ideas of how to generate contact points for common shape representations. Other
compromises include restricting the presentation of penalty-based methods to focus on explicit
time schemes. Also, recent work on continuous time integration and normals is omitted, as well
as work on barrier methods. However, we do introduce the cone-complementarity problem
formulation for modeling contact and friction, as these are a recent very interesting addition
to the field, yet only brief details about the numerical methods related to this type of model
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are covered. Lastly, we do not cover position-based and projective dynamics directly. However,
solvers applied here bear a resemblance to the proximal operators and iterative solvers, which
we do cover in full details. There is a bundle of more work that deserves mentioning here, and
we apologize for not having the time and space to give the wonderful work on those topics
the attention they deserve.
We would like to acknowledge that a lot of people have been involved in the creation of

these course notes. A community of peers has helped us to generate ideas and discussion how
to best present and explain topics, given feedback, proofread the content at various stages of
development, pointed us to relevant work in the field, and much more. The list is long, but in
particular we would like to acknowledge the support and help from Miles Macklin, Paul G.
Kry, Mihai Francu, Eric Paquette and many others.
Finally, we hope that you will enjoy this course, and that you find contact and friction

simulation a fun topic to learn about! Please visit the course website siggraphcontact.github.io,
where you will find programming examples and other supplementary material related to these
notes.

Sheldon and Kenny
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SYLLABUS
Introduction to Contact Simulation. We introduce the idea of time stepping a simulation.
The update loop can contain a time integrator, a numerical solver to compute implicit forces
or constraints, and a collision detection routine. We present the ordinary differential equations
(ODE) that govern the Newton dynamics of a simulation. Stepping in time an ODE is done using
an integrator and we introduce the semi-implicit and implicit Euler methods with a focus on
stability. A Lagrangian perspective permits us to easily add kinematic or geometric constraints
through Lagrange multipliers. We demonstrate that in this framework, non-interpenetration is
realized as a unilateral constraint, which is imposed by defining a gap function between bodies.
Imposing such constraints requires impulsive forces that vanish when contact breaks, and
we explain how this naturally leads to the complementarity conditions. Due to discretization,
errors in the constraints can accumulate resulting in penetration artefacts. This is especially
true for acceleration or velocity formulations. A standard remedy is to use stabilization, such
as Baumgarte.
Contact Generation. In this section, we focus on the practicalities of how to generate

contacts. We introduce the idea of generating contact based on primitive geometric features,
signed distance fields. The primary focus is on guidelines for robust contact detection and
extracting the contact information from various surface representations, and the various
problems that can arise.
Numerical Methods. We focus on the underlying mathematical derivation and recast the

physical model into a problem that can be solved using various numerical techniques. We first
show how pivoting methods may be used to solve the contact LCP by estimating the index set
of simulation variables. We then introduce the fixed point methods as framework for solving
general non-linear models, and proceed to derive the PGS, SOR, and Jacobi methods which
are a popular solvers for interactive computer graphics applications. Finally, we reformulate
the problem of satisfying the contact conditions and equations of motion as a root search
problem, providing the the basis for Newton-type methods, such as minimum-map and Fischer-
Burmeister reformulations. We also cover aspects of the importance of proper preconditioning
and regularization to achieve fast performance and robustness.
Selected Topics. We present on recent work for modeling friction cones that captures the

anisotropic nature of certain materials. We also present some special considerations when
simulating frictional contact using penalty-based methods.
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1 INTRODUCTION TO CONTACT SIMULATION
Contact simulation is mainly concerned with computing the forces that exist at interfaces
between physical objects. Physical objects can range from rigid bodies, such as a billiard ball
or vehicle chassis, to soft bodies, such as cloth and hair. We simply refer to a collection of such
objects and the forces acting on them and between them as a physical system. The interface
forces are termed contact forces and they prevent objects from penetrating each other during
motion and deformation, and they additionally model the resistance due to objects against
each other. These course notes are primarily focused on how to model and compute contact
forces in an efficient and robust manner.
Historically, constraint based methods for computing contact forces have been used by the

graphics community for simulation of rigid bodies. Many earlier works focused on improving
performance by developing faster methods for rigid body simulations. Hence, a lot of the
notation we use in these notes are influenced by these early works. One might primarily
read these notes while thinking about contact between rigid bodies, and indeed many of the
examples demonstrate the rigid case as it is the easier case after all. Nevertheless, much of the
material we cover here applies to elastic models and soft bodies too, and we will address some
of these differences when they arise. Furthermore, a complicating factor in contact simulation
is the generation of contacts using collision detection, which is a topic that we cover briefly in
order to convey the principal ideas.
At a high-level, there are three main paradigms for contact simulation. First, contact may be

simulated by constraint based methods, and these course notes are rooted in this paradigm.
This paradigm bares a lot of resemblance to constrained optimization where constraints are
solved exactly. Another paradigm is penalty based approaches, and these tend to rely on force-
based modeling to resolve interpenetration at the interface. Often this paradigm is introduced
conceptually as small abstract springs working between objects to keep them from overlapping.
Hence, the springs "penalize" overlap which gives rise to the name for this class of methods.
There are similarities here to penalty methods in numerical optimization, in particular barrier
methods that have recently become popular for contact simulation. The last paradigm accounts
for impulse-based methods where the contact between objects is conceptualized as sequences
of micro-collisions. These notes take their outset in the constraint based approaches as these
have been dominating real-time interactive simulation for decades. Constraint-based methods
also have the nice property that they are able to guarantee solving for contact exactly, at least
in such a way that constraints are always fulfilled. However, we later explain formulations
based on penalty methods and explain best practices when using this class of approach for
modeling contact in simulation pipelines. 6
These course notes seek to not only give the reader intuition about the theoretical models

that are used as the basis for a wide variety of contact simulations, but also to highlight
some best practices for all stages of the simulation pipeline. Note that the “An Introduction
to Physics-Based Animation” SIGGRAPH course [Bargteil et al. 2020] is an excellent related
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reference for an in-depth discussion of preliminaries, while this course on contact and friction
naturally picks up from where the other course wraps up.
We begin by introducing the equations of motion and numerical integration by time

stepping. Then, kinematic constraints are derived to resolve non-interpenetration and we
explain the importance of the complementarity condition. This leads into a presentation of
Coulomb friction and how it is included in the formulation of the contact problem. Finally,
the introduction ends with a discussion on how the formulation may be adapted to soft body
simulations.

1.1 The Equations of Motion
The Newton-Euler equations of motion [Goldstein et al. 2002] that govern the dynamics of a
physical system form a second-order ODE that can be written as

M(𝑡) ¤u(𝑡) = f (q(𝑡), u(𝑡), 𝑡) , (1)

whereM(𝑡) are themasses, q(𝑡) are the generalized positions, u(𝑡) are the generalized velocities,
and f (𝑡, q(𝑡), u(𝑡)) are the generalized forces acting on the system, which depend on the
positions and velocities. Notice that we are agnostic about what we are simulating at this point,
and the equation can be seen as describing the motion of rigid bodies, thin shells, or elastic
solids. Also notice that all terms in Equation 1 depend on the time 𝑡 . However, in computer
graphics, we are often only interested in determining the dynamical behavior at a particular
instant in time, and so the Newton-Euler equations may be written more succinctly as

M ¤u = f . (2)

The time instants for evaluating Equation 2 are determined by a numerical integrator, and
in the next section we briefly outline how to “step” the equations of motion using a popular
integration method in computer graphics.

1.2 Time Integration
Physical simulations for computer graphics are typically performed using a discrete numerical
integration with time step ℎ. There are two main types of numerical integrators: explicit and
implicit. The former evaluate the force at the beginning of the time step f (q−, u−), while the
latter evaluate it at the end f (q+, u+). Note that the superscript □+ is used to indicate an implicit
quantity and □− an explicit quantity. We can denote the forces for now simply as f without
specifying whether they are implicit or explicit, and this particular choice will depend upon
the application context. However, we will drop the latter from here on since computer graphics
applications largely use implicit integration schemes due to their increased numerical stability.
A Taylor expansion of the implicit velocities gives the first-order approximation

u+ ≈ u + ℎ ¤u ,
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where the change in velocities from the start of the time step to the end of the time step is
determined by the accelerations ¤u. Using this approximation to substitute for the accelerations
in Equation 2, and by applying a simple Euler integration scheme, we can write the linear
relationship governing the motion of a system with 𝑛 degrees freedom at each time step as

Mu+ = Mu + ℎ f (3)

with the mass matrix M ∈ R𝑛×𝑛, the momentum term Mu ∈ R𝑛 and applied forces f ∈ R𝑛.
Here, the velocities u+ ∈ R𝑛 are determined at the end of the time step, and for simplicity we
will consider the mass matrix M to be constant over the time step. For a rigid body system,
the mass matrix will consist of small blocks containing the total mass of the rigid bodies and
their 3 × 3 inertia tensors, whereas for soft bodies the mass matrix can be given by a volume
integral of mass density over some elements or a diagonal matrix of nodal mass values, like in
a particle system. The specific form can vary depending on the chosen discretization method
(such as finite elements, finite volumes or mass-spring systems).
An interesting observation is that Equation 3 gives the velocity-level Newton-Euler equations

of motion, and by evaluating the dynamics over a time step ℎ this effectively transforms the
instantaneous forces into impulses. Impulses are instantaneous quantities that abruptly change
the value of the momentum due to the action of a force over a small period of time. But we
can also consider them as we do here as integrals over the period ℎ of the force f .
Solving the linear system in Equation 3 to determine the velocities is an important step in

the numerical integration of a physical system. The velocities may then be used to update the
positions in an implicit fashion by

q+ = q + ℎH(u+),

where H defines a kinematic mapping between the generalized velocities u and positions
q. The kinematic mapping is needed when the generalized positions q require more than 𝑛
components. This is usually the case when using redundant parameters like quaternions or
orthogonal matrices for representing rotations.
In contact simulation, simple Euler schemes such as the one described in this section are

often considered sufficient. The reason for this is that contact models often assume a myopic
view point of a flat planar surface at the interface. This means motion with respect to these
models can be described in a linear fashion. For instance, the Coulomb model we introduce
later is for planar sliding motion only. As such, one will not get better performance or accuracy
from higher order integration schemes as they will be limited by the linear models of contact.
However, higher order integration schemes can be very efficient for simulating the free motion
of rigid bodies and elastic models without contact, and there is some work that considers
contact models for curved surfaces. In this case, higher order time integration may make sense.
Next, we consider how constraint equations may be used to couple the movement of the

degrees of freedom of a dynamical simulation.
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1.3 Constraints
Kinematic constraints can be used to couple the movement of bodies in a simulation, and
indeed this is exactly the approach we will describe in this section for simulating contact. A
collection of𝑚 constraint functions 𝜙 (q) ∈ R𝑚 implicitly define a manifold that is embedded
in the 𝑛-dimensional space of the simulation degrees of freedom, and movement of constrained
bodies is restricted to these manifolds. Observe that a constraint defines a relationship based
on the degrees of freedom of the system, q.
There are two types of constraint equations commonly found in dynamics simulation:

bilateral and unilateral. Bilateral constraint functions have the form 𝜙 (q) = 0. For instance,
hinges, ball-and-socket, and prismatic joints are modeled using bilateral constraint functions.
Whereas functions of the form 𝜙 (q) ≥ 0 are called unilateral constraints.
By assuming that constraints are initially satisfied, and that the constraint equations will

not be violated if there is no movement that leads to violation (i.e., movement is limited to
the constraint manifold), we can instead formulate the constraint equations in terms of the
velocities by computing the gradient of 𝜙 (q) with respect to q, such that J = 𝜕𝜙 (q)

𝜕q ∈ R
𝑚×𝑛

contains the constraint gradients of the𝑚 constraint equations. In rigid body systems, there
is often a dimensionality mismatch when changing from positions to velocities due to the
orientation. For instance, if quaternions are used to store body rotations, a kinematic map is
needed. Hence, we have J = 𝜕𝜙 (q)

𝜕q H ∈ R𝑚×7𝑁 for 𝑁 bodies. We describe the kinematic mapping
in detail in Section 1.10.1. For soft bodies, typically no such mapping is required. The velocity
level constraint equations can then be written as

J u = 0 (4)

for bilateral constraints, and
J u ≥ 0 (5)

for unilateral constraints. The constraints can be imposed through the inclusion of constraint
forces in the dynamical equations. These are forces that act in the direction of the constraint
gradient J, which encodes the directions in which bodies may be “pushed” or “pulled” without
doing any real work on the system, but that will force bodies to remain on the constraint
manifold. Thus, the constraint forces of a system are computed as

f𝑐 = J𝑇λ , (6)

where λ are Lagrange multipliers. These multipliers can be interpreted as the magnitudes of
the constraint forces if the constraint directions (i.e., gradients) are normalized.
In order to enforce the position constraints 𝜙 (q) = 0 or 𝜙 (q) ≥ 0, we need to integrate the

constraint forces in Equation 6 by applying the impulse ℎf𝑐 . Therefore, the notation 𝝀 = ℎ λ
is used to denote constraint impulse magnitudes. Notice that lambda changes font when we
include the time step to make it an impulse magnitude. It may feel a bit confusing with two
different notations for these lambdas, but it helps underlining when we talk about a force-based
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or impulse-based quantity, i.e. whether time integration has been done to get to a velocity level
form of our models. In computer graphics, the velocity-based form is dominant, and hence we
hope the reader will focus more on the mathematical and algebraic forms used for describing
the different kind of constraints.
Revising the equations of motion in Equation 3, we include the constraint impulsemagnitudes

as an implicit term, such that

Mu+ − J𝑇𝝀+ = Mu + ℎf, (7)

where 𝝀+ ∈ R𝑚 is a vector of constraint impulse magnitudes. Note that we have not specified
when J is evaluated, and in this course we will consider it to be explicit and constant throughout
the time step. And so, while the constraint forces are integrated explicitly, it is only in terms
of direction, as the Lagrange multipliers enforce the constraint at the end of the time step,
i.e., Ju+. However, there are cases when J it is treated implicitly, and thus requires evaluating
the gradient of 𝜙 (q + ℎΔu+) and resolving for the constraint forces in an iterative fashion.
This may mean performing additional collision detection tests, which can negatively impact
performance.
For a moment, let us consider just the bilateral constraints in the simulation. The linear

system combining the equations of motion and the velocity constraint equations can be written
as [

M −J𝑇
J 0

] [
u+
𝝀+

]
=

[
Mu + ℎ f

0

]
. (8)

We use the first row to solve for u+ and substitute our result into the second row to obtain a
reduced system that we can use to solve for 𝝀+. This technique is called forming the Schur
complement of the upper left block in Equation 8 and it results in the reduced linear system[

JM−1 J𝑇
]︸      ︷︷      ︸

A

𝝀+ + JM−1(Mu + ℎf)︸              ︷︷              ︸
b

= 0 , (9)

which is a commonly used form to solve for the constraint impulses. Once 𝝀+ are known, the
motion of the degrees of freedom can be recovered using Equation 7. Note that for rigid bodies
and particle systems using lumped masses, the block diagonal form ofM makes it trivial to
invert, and the resulting matrix A will also be positive semi-definite. Whereas, for implicitly
integrated elastic systems, they will have sparse damping and stiffness matrix contributions
added to the mass, leading us to choose solvers for Equation 9 that do not involve inversion of
the upper left block of Equation 8.
In the next section, we consider that contact can be modeled as a unilateral constraint with

some special complementarity conditions on the constraint impulses and the relative velocities
of bodies.
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Fig. 1. Illustration of the three contact states determined by the value of the gap function. Observe
that a single function value allows us to classify the state.

1.4 Non-interpenetration Contact Constraint
Unlike bilateral constraints, contact constraints are only active when a collision exists between
two bodies in the simulation. The state of this relationship between bodies is represented
using a gap function, 𝜙 , which also happens to be the constraint function. The gap function,
measures the distance between two bodies, and a positive value 𝜙 > 0 indicates a separation
between the bodies (see Figure 1).
At locations where the gap is zero or negative, 𝜙 ≤ 0, there is a contact between the bodies.

For smooth objects, their unit surface normals will face in opposite directions at the point
of contact. This defines a contact plane containing the point of contact and having a normal
vector that is parallel to one of the surface unit normals. Both the contact point and normal
direction are determined during the collision detection phase. For discretized geometries, such
as triangle meshes, it is more tricky to define the contact plane and we discuss this later in
Section 2. For now we can continue using our idealized smooth concept of a contact plane.
An impulse with magnitude 𝜆�̂� is applied at the contact location in order to keep the bodies

from interpenetrating. The non-interpenetration impulse is applied in a direction that is
perpendicular to the contact plane. That is, in the normal direction of the surfaces. This leads
to two considerations when applying contact forces. Either the bodies are not in contact and
there is no contact force, in which case

𝜙 > 0, 𝜆�̂� = 0 ,

or the bodies are touching (for instance, there is resting contact) and a non-zero contact force
is applied at the contact location, in which case

𝜙 = 0, 𝜆�̂� > 0 .

These two cases are exclusive, and often they are succinctly written as the complementarity
conditions of contact as

0 ≤ 𝜙 ⊥ 𝜆�̂� ≥ 0 . (10)
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𝐱
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Fig. 2. Left: Two bodies 𝑖 and 𝑗 not in contact have a positive gap function 𝜙 > 0. Right: A non-
interpenetration constraint is created between two colliding bodies. The gap function is zero, and the
constraint is enforced by an impulse with magnitude 𝜆�̂� and the direction of the impulse is determined
by the constraint Jacobian J =

[
J𝑖 J𝑗

]
.

Notice that we have used the complementarity operator “⊥”. If 𝑎 and 𝑏 are two scalars, then
0 ≤ 𝑎 ⊥ 𝑏 ≥ 0 is defined to mean that 𝑎 ≥ 0, 𝑏 ≥ 0, and 𝑎 𝑏 = 0. The ⊥ notation is a short
hand version that means the same thing.
The Equation 10 is termed the position level non-penetration complementarity condition.

Observe that this type of condition says nothing about the tangential motion. Hence, objects
can be in sustained touching contact while sliding relative to each other. Non-sliding sustained
contact state is often referred to as a resting contact.
Figure 2 illustrates the gap function before and after collision, which is positive and zero,

respectively. Usually, when the bodies are sufficiently close to touch, a non-interpenetration
constraint is created between the two bodies in order to keep them from overlapping. The
direction of the non-interpenetration impulse is determined by the contact plane, and the
impulse J𝑇𝜆+ is applied to both bodies involved in the collision.
Although the positions are used by collision detection to determine if two bodies are in

contact, the constraints in Equation 8 are formulated at the velocity-level . Recognizing that
contact constraints are generated only when 𝜙 = 0, we can reason about conditions on the
velocities of bodies during contact.
Recall that with semi-implicit and implicit integration techniques, the velocities at the end

of a time step are used to advance the simulation. Therefore, if two bodies are touching in the
current time step, they will not be touching in the subsequent time step if ¤𝜙 > 0. This is because
the two bodies will separate due to a positive relative velocity at the contact location. In this
case, there is no need to apply a contact force, and 𝜆�̂� = 0. However, if the relative velocity
is zero, ¤𝜙 = 0, then a force is needed to prevent the bodies from further interpenetrating,
i.e., 𝜆�̂� > 0. Therefore, the velocity level non-penetration complementarity condition may be
formally stated as

0 ≤ ¤𝜙 ⊥ 𝜆�̂� ≥ 0. (11)
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Here, we note that ¤𝜙 is the normal component of the relative velocity between the bodies at a
specific contact point. Hence, we use the notation ¤𝜙 = 𝑣�̂� for the constraint velocities in the
remainder of the notes. This means that if there is a separation velocity 𝑣�̂� > 0 in the normal
direction, then there can be no normal contact impulse. On the other hand, if there is a normal
contact impulse such that 𝜆�̂� > 0, then there is a resting contact and therefore 𝑣�̂� = 0.
Observe that Equation 11 is the result of approximating Equation 10 by substituting the first

order Taylor expansion for the gap function,𝜙+ ≈ 𝜙+ℎ 𝑣�̂� , and applying the knowledge that𝜙 =

0. Changing the expansion point leads to different schemes and can be used to foresee contact
as well as correcting drifting error that arise during simulation from computing approximate
solutions or numerical precision. Detecting and adding constraints prior to touching contact
would result in the scheme using the non-penetration complementary condition

0 ≤ (𝜙 + ℎ𝑣�̂�) ⊥ 𝜆�̂� ≥ 0 , (12)
where 𝜙 > 0 since contact has not yet happened. This is essentially an explicit first order
approximation of the gap function. This form is popular to avoid tunneling artifacts of objects
as it anticipates future contact points, and this idea is further discussed in Section 2 of these
notes.

1.4.1 Non-interpenetration Jacobian. Next, let us consider how to compute 𝑣�̂� . We will first
present the ideas for the case of rigid bodies and following this we will demonstrate how
to work with soft bodies. Noting that 𝑣�̂� is the rate of change of the gap function, ¤𝜙 , and by
applying some straightforward calculus, we get

𝑣�̂� = ¤𝜙 ≡
𝜕𝜙

𝜕𝑡
=
𝜕𝜙

𝜕q
𝜕q
𝜕𝑡

=
𝜕𝜙

𝜕q
H︸︷︷︸

J

u = J u . (13)

In the last step, we have used the kinematic relationship for rigid bodies ¤q = Hu from
Equation 1.2. This gives us a mathematical understanding of J. Looking more closely we notice
that the role of the Jacobian matrix is to map body-space velocities into a velocity for the gap
function. That is, we map from body-space to measure how fast the gap function is changing.
Using this insight, J for the non-penetration constraints may be constructed more precisely.

Consider two rigid bodies, 𝐴 and 𝐵, with centre of mass positions x𝐴 and x𝐵 that are colliding
at contact point p with unit contact normal �̂� pointing from 𝐴 towards 𝐵. The relative velocity
in the normal direction 𝑣�̂� is then given by

𝑣�̂� = �̂� · Δv , (14)
where Δv is the relative contact point velocity given by

Δv = (v𝐵 + 𝜔𝐵 × (p − x𝐵)) − (v𝐴 + 𝜔𝐴 × (p − x𝐴)) . (15)
Here, v𝐴 and v𝐵 are the linear velocities of center of masses and 𝜔𝐴 and 𝜔𝐵 are the angular
velocities. This notation is illustrated in left side of Figure 3.
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Fig. 3. Left: the notation involved in computing the relative contact point velocity of two rigid bodies
are depicted. Right: The normal and vector arms and barycentric coordinates are the information
needed to evaluate the contact Jacobian for two soft bodies modeled by tetrahedral elements.

Using the shorthand r𝐴 = (p − x𝐴) and r𝐵 = (p − x𝐵), the definition of the skew-symmetric
cross product matrix of a vector r =

[
𝑥 𝑦 𝑧

]𝑇 is

r× ≡


0 −𝑧 𝑦

𝑧 0 −𝑥
−𝑦 𝑥 0

 . (16)

The relative velocity in the normal direction can then be written as the matrix-vector product

𝑣�̂� =
[
−�̂�𝑇 �̂�𝑇 r×

𝐴
�̂�𝑇 −�̂�𝑇 r×

𝐵

]︸                            ︷︷                            ︸
J


v𝐴
𝜔𝐴
v𝐵
𝜔𝐵

︸︷︷︸
u

. (17)

This two-body system may be extended to include more body velocities in the system general-
ized velocity vector u and by adding corresponding zero-blocks to J. Extending to multiple
contact points means we get multiple rows in the Jacobian. Each one will have a structure
similar to Equation 17, but with kinematics that are specific to each contact.

1.4.2 Non-interpenetration Constraint for Soft Bodies. The case of a soft body can be derived
similar to the rigid body case. Often, a computational mesh is used to model the surface or
volume of a soft body (e.g., a linear tetrahedral mesh). We will use this as our working example
without loss of generality. Imagine a node of soft body 𝐴 touches a face of a tetrahedron from
soft body 𝐵. Let the position and velocity of the node from body 𝐴 be given by x𝑙,𝐴 and v𝑙,𝐴
where 𝑙 is the node index from body 𝐴. Let the four nodes defining the tetrahedron from body
𝐵 be given by x𝑖,𝐵 , v𝑖,𝐵 , x 𝑗,𝐵 , v 𝑗,𝐵 , x𝑘,𝐵 , v𝑘,𝐵 , x𝑚,𝐵 , and v𝑚,𝐵 where 𝑖 , 𝑗 , 𝑘 , and𝑚 are the node
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indices in body 𝐵. At the point of contact p we have

p = x𝑙,𝐴 = 𝑤𝑖x𝑖,𝐵 +𝑤 𝑗x 𝑗,𝐵 +𝑤𝑘x𝑘,𝐵 +𝑤𝑚x𝑚,𝐵 , (18)

where𝑤𝑖 ,𝑤 𝑗 ,𝑤𝑘 , and𝑤𝑚 are the barycentric coordinates of p with respect to the tetrahedron.
See the right side of Figure 3 for an illustration of the concepts. The relative contact point
velocity in the contact normal direction is then given by

𝑣�̂� = �̂� ·
(
𝑤𝑖v𝑖,𝐵 +𝑤 𝑗v 𝑗,𝐵 +𝑤𝑘v𝑘,𝐵 +𝑤𝑚v𝑚,𝐵 − v𝑙,𝐴

)
, (19)

and this can again be rewritten as a matrix-vector product, such that

𝑣�̂� =
[
−�̂�𝑇 𝑤𝑖�̂�

𝑇 𝑤 𝑗�̂�
𝑇 𝑤𝑘�̂�

𝑇 𝑤𝑚�̂�
𝑇
]︸                                         ︷︷                                         ︸

J


v𝑙,𝐴
v𝑖,𝐵
v 𝑗,𝐵
v𝑘,𝐵
v𝑚,𝐵

︸ ︷︷ ︸
u

. (20)

Here, only the nodes involved in the contact are include in the Jacobian matrix J and the
vector of node velocities u. However, soft bodies usually contain many more nodes that need
to be included into the system velocity vector u, and thus corresponding zero blocks should
be added to the Jacobian. As with the rigid body case, adding more contact points results in
adding more rows of similar pattern to the system Jacobian. One may derive other specific
formulas for the Jacobian in cases of contact between two nodes only, or two tetrahedra, or
one node from soft body and one rigid body, and so on.

1.5 The Coulomb Friction Law
Friction is an important phenomena we must simulate in graphics applications. This introduces
additional constraints on the movement of bodies in the simulations and the forces generated
within the plane of contact.
In order to describe friction we will define a local contact frame for a single point of contact.

This is called the contact frame and it consist of two orthogonal unit vectors that span the
contact plane, let us call them 𝑡 and 𝑏, the contact plane can be viewed as the shared tangent
plane between two smooth surfaces at a point of contact, p. Orthogonal to the contact plane we
have the contact normal direction. One can think of this as the direction where one at myopic
scale must prevent motion to avoid penetration, we denote this direction by �̂�. There are two
choices for which the direction of the normal could point in. If the two surfaces in contact are
labelled 𝐴 and 𝐵 then we adopt the convection that the normal points from 𝐴 towards 𝐵, and
that 𝑡 , 𝑏 and �̂� forms a right handed coordinate system. This local coordinate system is used to
describe the contact physics in. The contact frame is illustrated in Figure 4. Sometimes the
frame is referred to as the contact basis, contact coordinate system or contact space. Observe
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Fig. 4. The contact frame defines a right-handed coordinate system and is defined by the two tangent
plane vectors 𝑡 and 𝑏 and the plane normal vector �̂�.

that the normal can be defined from the spatial derivative of the gap function we introduced
in Section 1.4. There exist infinite many choices for generating the tangent vectors 𝑡 and 𝑏.
When working with isotropic friction model it is from the model viewpoint not important how
these vectors are generated but for anisotropic friction their choice is critical in aligning the
friction cone properly between the two surfaces. We treat this in more detail in Section 4.1.
When describing friction forces in the contact space then we need to know the relative

velocity of the surfaces in our contact frame. Let Δv be the relative velocity of the surfaces in
world space. Then, the contact space version is:

v =
[
�̂� 𝑡 𝑏

]𝑇︸       ︷︷       ︸
C𝑇

Δv (21)

Notice that we picked the normal as the first basis vector in this transformation. This is just a
convenient convention when we would like to have the normal part of the contact problem
solved before the tangential components.
Realizing that the relative contact point velocity in world space between two rigid bodies is

given by Equation 15, we can now write the contact space velocity as

v = C𝑇
[
−I3×3 r×

𝐴
I3×3 −r×𝐵

]︸                             ︷︷                             ︸
J


v𝐴
𝜔𝐴
v𝐵
𝜔𝐵

︸︷︷︸
u

, (22)

where I3×3 is the 3-by-3 identity matrix. We see here that J has simply been extended with
the tangent vectors compared to our previous non-frictional case. The J is called the contact
Jacobian and from above equation we observe that is role is simply to map body-velocities
from world-space into the contact space velocity. We have now explained how the Jacobian
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from Equation 17 can be extended to include tangential velocities and the same extension can
trivially be done for the soft body Jacobian in Equation 20. In the following we let 𝑣�̂� denote
the normal component of the contact space velocity and v𝑡 the tangential component spanned
by 𝑡 and 𝑏, similar notation is used for the contact impulse, where 𝜆�̂� ∈ R is the normal impulse
and 𝝀𝑡 ∈ R2 is the tangential impulse (i.e., friction force between two surfaces). In this section
we present a physical law that describes this force.

1.5.1 Theory of Friction. Coulomb friction couples the normal impulse 𝜆�̂� and tangential
impulses. The exact isotropic planar Coulomb friction cone constraint, for tangential friction
force 𝝀𝑡 applied to colliding bodies, can be written as

∥𝝀𝑡 ∥2 ≤ 𝜇𝜆�̂� . (23)
The non-linear inequality in Equation 23 defines a quadratic cone. The coefficient 𝜇 is called
the coefficient of friction and is a unit-less non-negative value that relates friction force to the
normal force. The coefficient of friction is specific in regards to the two types of materials that
are in contact. When setting up simulations one often have to specify its value which can be
bound measured data. We added a small table below with common values. The 𝜇-coefficient is
from a practical viewpoint considered to be a material-parameter only. We list some typical
values for the coefficient of friction in Table 1

Materials and Material
Combinations

Surface Conditions Frictional Coefficient

Static Kinetic (sliding)
Aluminum - Aluminum Clean and Dry 1.05 - 1.35 1.4
Aluminum - Aluminum Lubricated and Greasy 0.3
Cast Iron - Cast Iron Clean and Dry 1.1 0.15
Car tire - Asphalt Clean and Dry 0.72
Car tire - Grass Clean and Dry 0.35
Ice - Wood Clean and Dry 0.05
Leather - Oak Parallel to grain 0.61 0.52
Rubber - Dry Asphalt Clean and Dry 0.9 0.5 - 0.8
Steel - Steel Clean and Dry 0.5 - 0.8 0.42
Steel - Steel Lubricated and Greasy 0.16
Steel - Steel Castor oil 0.15 0.081

Table 1. Coefficients of friction for various pairs of materials (from “The Engineering Toolbox” (https:
//www.engineeringtoolbox.com/). Observe that the coefficient of friction depends on environmental
changes.

The Coulombmodel is an empirical model, meaing that it has been derived from observations
from measurements. The field of tribology is, among other things, concerned with explaining
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the physical cause to the friction force. It turns out that friction is a quite complicated matter
and many factors influence its behavior, and friction is essentially a system response. The
causes of friction are explained from theory of asperities. At micro-scale level the asperities are
sticking out of the material surfaces and when objects come into contact the asperities deform,
break and plow through the surfaces thereby causing "resistance" to motion. It is this resistance
that we humans perceive as the friction force. Besides the micro-scale geometry many other
factors influence the behavior such as lubrication, electrostatic effects, third-party obstacles
like small grains or dust, humidity and temperature, elastic and plastic micro-deformations of
the surfaces, tear and wear and many more effects. The coefficient of friction can be understood
as boiling all that complexity down to a single number. This is convenient from a modeling
viewpoint as it makes it feasible for us to simulate many objects with complex shapes subject to
frictional contact interaction. The Coulomb model is not perceived as being very accurate, but
its simplicity makes it very appealing and thus is has wide-scale adoption for contact simulation.
It is generally accepted that the coefficient of friction changes value when a transition from
static friction (sticking) to dynamic friction (sliding) happens. It may be explained from bonding
of asperities breaking when sliding happens and the dynamic coefficient of friction is therefore
lower than that static one. The actual transition from sticking to sliding is called the onset of
friction.
Let us return to setting up our model of friction that we use in multibody simulations for

rigid and soft bodies in the field of computer graphics. The isotropic Coulomb friction law is
in fact a two-part law:
• Slip: If the bodies are sliding relative to each other, then the direction of the friction force
is opposed to the tangential relative velocity and its magnitude is 𝜇𝜆�̂� .
• Stick: If the objects are not moving relative to each other, then the friction force can have
any direction as long as the inequality in Equation 23 holds.

We can express both cases mathematically as follows

𝜇 · 𝜆�̂� −
√︁
𝝀𝑡 · 𝝀𝑡 ≥ 0 , (24a)

∥v𝑡 ∥
(
𝜇𝜆�̂� −

√︁
𝝀𝑡 · 𝝀𝑡

)
= 0 , (24b)

∥v𝑡 ∥∥𝝀𝑡 ∥ = −v𝑡 · 𝝀𝑡 . (24c)

Observe here how the term ∥v𝑡 ∥ act as a switch for selecting between the cases of slipping or
sticking. If ∥v𝑡 ∥ = 0 then the last two conditions are trivially fulfilled and the first condition
essentially only tells us that the friction force must belong to the friction cone. On the other
hand, if ∥v𝑡 ∥ > 0 then the two last conditions kick in. The first one ensures the friction
force is maximized, and the last one ensures that the friction force is opposing the sliding
direction. This is illustrated in Figure 5. This form of the isotropic Coulomb friction model is
frequently used for modeling frictional contact, and it represents a non-linear complementarity
problem (NCP) formulation of frictional contact. However, in Section 1.6 and Section 1.7,
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Fig. 5. Graphical illustration of the isotropic Coulomb law. Left: the case of slipping is depicted with a
unique solution. Right: the case of sticking is shown to have multiple solutions. The bottom row shows
the cone as seen from the top. Observe how the circular shape of the cone makes it particular easy to
compute the friction force.

we present details on how to linearize the Coulomb friction model into the standard linear
complementarity problem (LCP) and Boxed-LCP forms, which are the origin for the many LCP
numerical methods we cover in Section 3.
The stick-slip conditions can be written up in a more general form as they are related to

energy dissipation. If one assumes that the friction force maximally dissipates energy, then in
the case of an isotropic circular friction cone this principle of maximum dissipation reduces to
the stick-slip conditions we introduced above. For the more general force, we start by writing
up the definition of the friction cone using a set notation:

F (𝜇𝜆�̂�) ≡
{
𝛾 ∈ R2 �� ∥𝛾 ∥2 ≤ 𝜇𝜆�̂�} . (25)

This set denotes all feasible friction forces for the case of isotropic planar Coulomb friction.
One can define the friction cone differently all dependent on the type of materials. For instance,
an elliptical shaped cone can be used to model anisotropic friction. The principle of maximum
dissipation can now be written as a minimization problem,

𝝀𝑡 = arg min
𝛾∈F (𝜇𝜆�̂�)

v𝑡 · 𝛾 . (26)
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That is to say the friction force is given by the force that instantaneously removes most (i.e.
maximum dissipation) energy from the system.
If the friction cone F is a strict convex set then the minimization problem has an unique

solution that are characterized by the first order necessary optimality conditions. If we
momentarily denote the objective function as 𝑓 (𝛾) ≡ v𝑡 · 𝛾 and the convex set as Ω = F (𝜇𝜆�̂�)
then these conditions can be written as

− ∇𝛾 𝑓 (𝜆𝑡 ) ∈ NΩ (𝝀 t̂) (27)

where NΩ (𝝀 t̂) is the normal cone of F (𝜇𝜆�̂�) at the position 𝝀𝑡 . The normal cone of a convex
set can be defined as follows,

NΩ (𝝀 t̂) ≡
{
z
�� z · (𝛾 − 𝝀 t̂

)
≤ 0, ∀𝛾 ∈ Ω

}
. (28)

If the set Ω is strictly convex, then we haveNΩ (𝝀𝑡 ) ≡ −v𝑡 . If the set Ω is only convex, then the
normal cone may be a multi-set. This first order optimality condition can be written concisely
as the condition

∀𝛾 ∈ F (𝜇𝜆�̂�) and (𝛾 − 𝝀𝑡 ) · v𝑡 ≥ 0 . (29)

This form is known as a variational inequality (VI) and is often the mathematical form
of principle of maximum dissipation that is used as starting point for deriving nonlinear
complementarity problem (NCP) formulations of the frictional contact problem. These NCP
problems can be solved quite nicely with Newton type of methods. The VI-form given above
can be used more directly in a numerical method without needing to do the linearizations
we cover below in Sections 1.6 and 1.7. It offer one with a trade-of between a more "difficult"
to solve nonlinear problem or an "easier" to solve linear version. The nonlinear form is more
compact than the linear form in the sense that much fewer variables are needed. Due to its
capability to inherently express the non-linearity the VI-form generalizes easily to an-isotropic
friction and proximal operators allow for quite general shaped convex cones.
Above we have covered the most typical and classical models for planar dry friction. There

exist other friction models. The above models can be extended trivially to include torsional
(Coulomb–Contensou friction) and rolling friction by incorporating angular counter parts, we
show this for torsional friction when we introduce proximal operators in Section 4.1. There
are many more models as described by Sheng Chen and Liu [2016]. Like the Tresca friction
which limits the friction force to a constant magnitude or the Stribek friction model which
is dependent on the velocity magnitude to model effects of lubrication. Some models seek
inspiration in micro-scale geometry interaction such as the bristle friction model. In Section 4.2
we present a new friction model that has originated in the graphics field that take a micro-scale
modeling approach to present more interesting friction phenomena that go beyond the typical
isotropic Coulomb friction model.
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Fig. 6. A friction cone approximated by normal direction �̂� and four friction directions {𝑡1, 𝑡2, 𝑡3, 𝑡4}
that are tangent to the contact plane.

1.6 The Linear Complementarity Problem Model of Frictional Contact
A linear friction model is preferred for many applications due to their efficiency and compati-
bility with a wide variety of numerical solvers. Hence a linearized approximation of the friction
cone introduced in the previous section is often used. Stewart and Trinkle, Anitescu and Potra,
among others, linearize the 3D friction model using a polyhedral cone [Anitescu and Potra
1997; Stewart and Trinkle 1996]. The polyhedral cone is given by a span of 𝑘 + 1 unit vectors
{�̂�, 𝑡1, . . . , 𝑡𝑘}, where �̂� is the normal direction of the contact plane and {𝑡1, . . . , 𝑡𝑘} all lie in
the contact plane (see Figure 6). We use a positive span for the tangent vectors {𝑡1, . . . , 𝑡𝑘},
which means that each tangent vector has a twin vector that is oriented in the exact opposite
direction. For instance, notice in Figure 6 that 𝑡2 is opposite 𝑡1. The advantage of using tangent
vectors that point in opposite directions is that it allows the friction force to be written with
all non-negative numbers in this basis. The disadvantage, from a computational viewpoint, is
that one needs more numbers.
One advantage of the non-negative numbers is that they help us couple the sliding direction

to the friction force direction. Let us just show a 1D example to make this modeling trick more
clear. Assume we have some friction force measure 𝑐 along the axis 𝑡 . We can express this
measure instead using two numbers 𝑎 ≥ 0 and 𝑏 ≥ 0, such that

𝑐 𝑡 = 𝑎 𝑡 − 𝑏 𝑡 . (30)

Notice that 𝑐 can be both a positive and negative number depending on the friction force
direction and that 𝑐 is now replaced by two non-negative numbers 𝑎 and 𝑏. In the above
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Fig. 7. The accuracy of the polyhedral cone approximation – light blue shading – increases as the
number of tangential directions increases. The improvement in accuracy is at the cost of an increasing
problem size.

example, the positive span is made of the two vectors {𝑡,−𝑡}. Observe also that we must have

0 ≤ 𝑎 ⊥ 𝑏 ≥ 0 . (31)

From this it is obvious that 𝑎 is the positive part of 𝑐 and 𝑏 is the negative part of 𝑐 , and as 𝑐
can not be both positive and negative at the same time then 𝑎 and 𝑏 must be complementary.
The positive span approximation allows us to rewrite Equation 23 as

0 ≤
(
𝜇 𝜆�̂� −

∑︁
𝑖

𝜆𝑡𝑖

)
, (32)

where 𝝀𝑡 =
[
𝜆𝑡1 · · · 𝜆𝑡𝑘

]𝑇 is a vector of friction impulses along the tangent directions. In
this way, the nonlinear Euclidean norm from the Coulomb model is replaced with the linear
form in Equation 32. In principle, one can add as many tangent directions as wanted to get a
better approximation to the exact cone as illustrated in Figure 7.
One challenge with this model is to correctly formulate the stick-slip transitions. We have

introduced 𝑘 possible directions for measuring a slipping velocity and we need just one scalar
value– the slack variable– to determine the correct stick-slip behavior. The idea here is that we
do not need to measure the exact slipping velocity. We only need information about whether
there is slipping or not. Hence, one idea is to simply to identify the direction of maximum
slipping velocity. If we let the maximum slipping velocity along any direction by denoted by
𝛽 ≥ 0 then we must have

0 ≤ (𝛽 e + v𝑡 ) (33)
where v𝑡 =

[
𝑣𝑡1 . . . 𝑣𝑡𝑘

]
is the sliding velocity measured along each tangent vector and

where e is a 𝑘 dimensional vector of ones. Observe here that 𝛽 can only be zero if v𝑡 is zero. If
𝛽 is positive, then it will have the same value of the maximum component of v𝑡 . Hence, we
say 𝛽 is a estimate or measure of the maximum sliding velocity along the directions of the
positive span of tangent vectors.
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The next step to realize is the condition that if there is slipping the the friction force must
have its maximum value in the opposite direction according to the principle of maximum
dissipation. This translates into saying that the friction force should work such that it removes
the maximum amount of energy from the system. To ensure this we will make sure that when
𝛽 > 0 then

(
𝜇 𝜆�̂� −

∑
𝑖 𝜆𝑡𝑖

)
becomes zero. This means the friction force will have its maximum

allowed value when sliding. However, to get the direction of the friction correct we will force
(𝛽 e + v𝑡 ) to become zero when we have a friction component. This means when 𝝀𝑡 > 0 then
(𝛽 e + v𝑡 ) = 0.
Historically, the variable 𝛽 for switching between the slip and stick regimes is called a “slack”

variable. This name may appear non-intuitive at first, but consider it a measure of the amount
of sliding that is present during the current state. It is these stick-slip transitions that make
the frictional problem difficult, and hence why specialized numerical solvers are required to
deal with complementarity conditions (as we will see in Section 3).
We may now summarize the four ingredients that went into stating a linear model for

isotropic Coulomb friction:

• The non-peneration constraints that turn on and off whether we have sustained contact
or separation.
• Linearization of the friction cone to remove the non-linear terms.
• Replace the measure of slipping velocity with the measure of maximum direction of
slipping velocity, to give us a single switching variable to model stick-slip transitions.
• Using the principle of maximum dissipation to pick a unique friction direction when
slipping occurs.

Finally, we can write up the complete mathematical model for our derivation. Letting 𝝀𝑡 =[
𝜆𝑡1 · · · 𝜆𝑡𝑘

]𝑇 be a vector of friction impulses, the linearized model, including complemen-
tarity conditions, can be formally stated as

0 ≤ 𝑣�̂� ⊥ 𝜆𝑛 ≥ 0, (34a)
0 ≤ (𝛽 e + v𝑡 ) ⊥ 𝝀𝑡 ≥ 0, (34b)

0 ≤
(
𝜇𝜆�̂� −

∑︁
𝑖

𝜆𝑡𝑖

)
⊥ 𝛽 ≥ 0. (34c)

The first complementarity constraint in Equation 34 models the non-penetration constraint
as before. The second equation makes sure that in case we do have friction 𝜆𝑡𝑖 > 0 for some
𝑖 , then 𝛽 will estimate the maximum sliding velocity along the 𝑡𝑖 ’s directions. Observe that
Equation 34b is a 𝑘-dimensional vector equation whose main purpose is to choose the direction
𝑡𝑖 that is best for the direction of maximum dissipation. The last equation makes sure the
friction force is bounded by the Coulomb friction cone. Notice that if 𝛽 > 0, the last equation
will force the friction force to lie on the boundary of the polyhedral friction cone. If 𝛽 = 0,
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Fig. 8. The friction cone approximated by a box, where the limits of friction impulses in each tangential
direction t𝑖 are determined by the box limit equation 𝜆𝑙𝑜𝑡𝑖 ≤ 𝜆𝑡𝑖 ≤ 𝜆

ℎ𝑖
𝑡𝑖
.

then the two last equations model static friction. That is, no sliding can occur and any friction
force inside the friction cone is feasible.
For a general system consisting of 𝑝 contacts, we can assemble the global Jacobian matrices

containing the non-interpenetration and tangential frictional constraints for all contacts. The
non-interpenetration Jacobian has a similar form to Equation 22, but with a single row per
contact. For example, the 𝑖th contact with normal �̂�𝑖 is

J�̂�,𝑖 =
[
−�̂�𝑇𝑖 �̂�𝑇𝑖 r

×
𝑖,𝐴

�̂�𝑇𝑖 −�̂�𝑇𝑖 r×𝑖,𝐵
]
, (35)

and for all 𝑝 contacts we have J�̂� =
[
J𝑇
�̂�,1 . . . J𝑇

�̂�,𝑝

]𝑇
. Here the Jacobian is shown in its concise

form, but in practice care must be taken so that the dimensions of the global matrix match the
degrees of freedom of the dynamical system.
The frictional Jacobian is assembled in a similar way, but with 𝑘 rows per that correspond to

the friction basis in Figure 7, such that for contact 𝑖 the matrix is

J𝑡,𝑖 =


−𝑡𝑇𝑖,1 𝑡𝑇𝑖,1r

×
𝑖,𝐴

𝑡𝑇𝑖,1 −𝑡𝑇𝑖,1r×𝑖,𝐵
...

...
...

...

−𝑡𝑇
𝑖,𝑘

𝑡𝑇
𝑖,𝑘
r×
𝑖,𝐴

𝑡𝑇
𝑖,𝑘
−𝑡𝑇
𝑖,𝑘
r×
𝑖,𝐵

 , (36)
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and for all 𝑝 contacts we have J𝑡 =

[
J𝑇
𝑡,1 . . . J𝑇

𝑡,𝑝

]𝑇
. Finally, the constrained equations of

motion for the system (i.e., in the form of Equation 8) may be written as
M −J𝑇

�̂�
−J𝑇

𝑡
0

J�̂� 0 0 0
J𝑡 0 0 E
0 �̄� −E𝑇 0



u+
𝝀+
�̂�

𝝀+
𝑡

𝛽

 +

−Mu − ℎf

0
0
0

 =


0
v�̂�
v𝑡
0

 (37a)

0 ≤ v�̂� ⊥ 𝝀+�̂� ≥ 0 (37b)
0 ≤ (v𝑡 + E𝛽) ⊥ 𝝀+

𝑡
≥ 0 (37c)

0 ≤ �̄�𝝀+�̂� − E
𝑇𝝀+

𝑡
⊥ 𝛽 ≥ 0 (37d)

where �̄� = diag
( [
𝜇1 . . . 𝜇𝑝

] )
is a diagonal matrix containing friction coefficients of each

contact, and E = diag
( [
e𝑇1 . . . e𝑇𝑝

] )
is a block diagonal matrix containing 𝑘 dimensional

vectors of ones. By applying the Schur complement “trick” here, we can compute the reduced
system (

C + GM−1G𝑇
)

︸             ︷︷             ︸
A


𝝀+
�̂�

𝝀+
𝑡

𝛽

︸︷︷︸
x

+GM−1 (Mu + ℎf)︸               ︷︷               ︸
b

=


v�̂�
v𝑡
0

 , (38)

where

C =


0 0 0
0 0 E
�̄� −E𝑇 0

 , and G𝑇 =
[
J𝑇
𝑡

J𝑇
�̂�

0
]
.

Then, Equation 37a can be written concisely and compactly in the form of a standard LCP
form as

0 ≤ Ax + b ⊥ x ≥ 0 . (39)

This illustrates how powerful the LCP model really is. By simply assembling the A matrix and
b vector, we can call our favorite LCP solver to compute x. The system may be slightly reduced
by noting that the first row in the system can be used to eliminate u+. This rewrite is similar
to how Equation 8 was transformed in Equation 9 using the Schur complement. Another
important observation here is that A is asymmetric for the LCP model. This has consequences
with regards to the solvers than can be applied to this model. However, the boxed model we
derive in the next section breaks the coupling of the tangent directions and this leads to a
matrix A that is symmetric. .
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1.7 The Boxed Linear Complementarity Problem Model of Frictional
Contact

An alternative for discretizing the friction cone can be seen in Figure 8. Using two orthogonal
tangent directions, one can write independent inequalities in each friction direction to have
the sliding force limited by the coefficient of friction, 𝜇, times the normal force, 𝜆�̂� . That is,

𝜆lo
𝑡1
≤ 𝜆𝑡𝑖 ≤ 𝜆

hi
𝑡1

(40a)

𝜆lo
𝑡2
≤ 𝜆𝑡2 ≤ 𝜆

hi
𝑡2

(40b)

where 𝜆𝑙𝑜
𝑡𝑖
= −𝜇𝜆�̂� and 𝜆ℎ𝑖𝑡𝑖 = 𝜇𝜆�̂� . Some iterative solvers update these friction bounds during the

solve based on the magnitude of the normal forces, yielding a four-sided pyramidal cone that is
larger than the true friction cone (in contrast to the approximation in Figure 6 which is inside
the true cone). A further approximation is made by other solvers: using a preliminary solve of
the normal forces, the bounds can be set and the system can be solved with box friction limits.
The bounds on friction impulses in Equations 40a-40b requires us to develop a numerical

method for a problem class which is slightly more general than the classic LCP. Problems in
this more general class are called boxed linear complementarity problems (BLCP).
One appealing notational benefit of writing the contact and friction models as a BLCP is

that both the non-penetration constraints and friction bounds can be expressed with the same
algebraic notation simply by changing how the lower and upper bounds are defined. For
instance, normal impulses have lower and upper bounds 𝜆lo

�̂�
= 0 and 𝜆hi

�̂�
= ∞. We demonstrate

this by allowing the index 𝑖 to refer to a friction variable or a normal impulse, and then make
appropriate changes to the bounds. Given 𝜆𝑖, 𝑣𝑖, 𝜆lo𝑖 , 𝜆

hi
𝑖 ∈ R, the following three conditions

must be satisfied:

𝑣𝑖 > 0⇒ 𝜆𝑖 = 𝜆
lo
𝑖 (41a)

𝑣𝑖 < 0⇒ 𝜆𝑖 = 𝜆
hi
𝑖 (41b)

𝑣𝑖 = 0⇒ 𝜆lo𝑖 ≤ 𝜆𝑖 ≤ 𝜆hi𝑖 (41c)

The variables 𝜆lo𝑖 and 𝜆hi𝑖 are the lower and upper bounds on 𝜆𝑖 , and usually it is assumed that
𝜆lo𝑖 < 𝜆hi𝑖 . We note that by decomposing the residual velocity as 𝑣𝑖 = +𝑣−−𝑣𝑖 , the BLCP can be
written as three separate LCPs:

0 ≤ +𝑣𝑖 ⊥ (𝜆𝑖 − 𝜆lo𝑖 ) ≥ 0 (42a)

0 ≤ −𝑣𝑖 ⊥ (𝜆hi𝑖 − 𝜆𝑖) ≥ 0 (42b)
0 ≤ −𝑣𝑖 ⊥ +𝑣𝑖 ≥ 0 (42c)

Similar to the polyhedral cone version of the LCP from Section 1.6, a linear system for 𝑝
contacts can be assembled. We begin with the Jacobian matrix for a single contact 𝑖 , which is
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given by

J𝑖 =

−�̂�𝑇𝑖 �̂�𝑇𝑖 r

×
𝑖,𝐴

�̂�𝑇𝑖 −�̂�𝑇𝑖 r×𝑖,𝐵
−𝑡𝑇𝑖,1 𝑡𝑇𝑖,1r

×
𝑖,𝐴

𝑡𝑇𝑖,1 −𝑡𝑇𝑖,1r×𝑖,𝐵
−𝑡𝑇𝑖,2 𝑡𝑇𝑖,2r

×
𝑖,𝐴

𝑡𝑇𝑖,2 −𝑡𝑇𝑖,2r×𝑖,𝐵

 . (43)

This is in fact the same Jacobian matrix from Equation 22, where 𝑡1 = 𝑡 and 𝑡2 = 𝑏. The global
Jacobian matrix can then be written as J =

[
J𝑇1 . . . J𝑇𝑝 ∈ R3𝑝×𝑛]𝑇 . Finally, we write global

BLCP of the constrained equations of motion as:[
M −J𝑇
J 0

]
︸      ︷︷      ︸

A

[
u+
𝝀+

]
+

[
−Mu − ℎf

0

]
︸         ︷︷         ︸

b

=

[
0
v

]
, (44a)

0 ≤ +v ⊥ 𝝀+ − 𝝀lo ≥ 0 , (44b)

0 ≤ −v ⊥ 𝝀hi − 𝝀+ ≥ 0 , (44c)
0 ≤ −v ⊥ +v ≥ 0 . (44d)

Note that in the above formulation, the constraint impulses are ordered according to the rows of
J, such that 𝝀+ =

[
𝜆�̂�1 𝜆𝑡1,1 𝜆𝑡1,2 . . . 𝜆�̂�𝑝 𝜆𝑡𝑝,1 𝜆𝑡𝑝,2

]𝑇 . The Schur complement may be used
to eliminate the variable u+ from this system, similar to how Equation 8 was transformed in
Equation 9, and we need only solve for 𝝀+. From top row we obtain u+ = M−1J𝑇𝝀+ + u+ℎM−1f
and substitution into the bottom row yields

JM−1J𝑇︸  ︷︷  ︸
A

𝝀+ +
(
−Ju − ℎJM−1f

)︸              ︷︷              ︸
b

= v , (45a)

0 ≤ +v ⊥ 𝝀+ − 𝝀lo ≥ 0 , (45b)

0 ≤ −v ⊥ 𝝀hi − 𝝀+ ≥ 0 , (45c)
0 ≤ −v ⊥ +v ≥ 0 . (45d)

1.8 The Cone Complementarity Problem for Frictional Contact
The Coulomb friction model we introduced in Section 1.5 combined with the non-penetration
constraint from Section 1.4 is essentially a nonlinear combinatorial problem. It is by its very
nature really not an optimization problem. In this section we will introduce a relaxation
technique that changes the original model but in such a way that we obtain a convex mini-
mization problem. We will start our rewrite of the contact force model by changing the normal
non-penetration constraint to the form [Anitescu and Hart 2004]

0 ≤ 1
ℎ
𝜙 + 𝑣�̂� − 𝜇

√︃
𝑣2
𝑡
+ 𝑣2

𝑏
⊥ 𝜆𝑛 ≥ 0 . (46)
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Here v = {𝑣�̂�, 𝑣𝑡 , 𝑣𝑏} is the contact space velocity. Usually we have 𝜙 = 0 for touching contacts
and then the equation simplifies to

0 ≤ 𝑣�̂� − 𝜇
√︃
𝑣2
𝑡
+ 𝑣2

𝑏
⊥ 𝜆�̂� ≥ 0 . (47)

This is essentially the only change we are making, everything else we keep the same. What
remains is a bit of mathematical convenience in rewriting everything into a simple form. We
will now combine this relaxed normal non-penetration constraint with the isotropic planar
Coulomb model from previously. This time we will write up both the normal and friction parts
simultaneously into one single equation. To do so we need to recall a few definitions from
math. The dual cone to a convex cone K is defined as

K★ ≡ {y | y · x ≥ 0,∀x ∈ K} . (48)
The polar cone to a convex cone K is defined as

K◦ ≡ {y | y · x ≤ 0,∀x ∈ K} . (49)
Observe we have K◦ = −K★. We now have enough cone-formalism to proceed with putting
our model together. Recall that the isotropic Coulomb friction law stated that 𝜇𝜆�̂� ≥

𝝀 t̂
,

where 𝝀𝑡 = (𝜆𝑡 , 𝜆𝑏)
𝑇 . This we can rewrite into 𝜇2𝜆�̂� − 𝜆2

𝑡
− 𝜆2

𝑏
≥ 0. Now let us define the convex

friction cone as follows,

F𝜇 ≡
{
𝝀 = (𝜆�̂�, 𝜆𝑡 , 𝜆𝑏)

𝑇 ∈ R3
��� √︃𝜆2

𝑡
+ 𝜆2

𝑏
≤ 𝜇𝜆�̂�

}
. (50)

This is a little different from the previous meaning of F (𝜇𝜆�̂�) where 𝜆�̂� was seen as an input
parameter that generates a specific cone. The new notation allow us to write 𝜆 ∈ F𝜇 to express
the bound of the Coulomb friction law. We now write the combined normal and friction
constraints simply as a cone complementarity problem (CCP),

F★
𝜇 ∋ v ⊥ 𝜆 ∈ F𝜇 , (51)

or equivalently,
F ◦𝜇 ∋ −v ⊥ 𝜆 ∈ F𝜇 . (52)

The cone complementary notation means that
− v ∈ F ◦𝜇 , 𝝀 ∈ F𝜇 , and − v · 𝝀 = 0 . (53)

For the isotropic Coulomb friction cone we see that the dual cone is defined as

F ◦𝜇 ≡
{
v = {𝑣�̂�, 𝑣𝑡 , 𝑣𝑏} ∈ R

3
��� √︃𝑣2

𝑡
+ 𝑣2

𝑏
≤ 1

𝜇
𝑣�̂�

}
. (54)

Figure 9 illustrates the difference between the nonlinear complementarity problem (NCP)
formulation of the friction contact we have presented previously and the new cone comple-
mentarity problem (CCP) model we just presented.
As the figure illustrates the CCP model can be written quite compact and that the sliding

velocity v has been relaxed. That is we have given it more “freedom” not to be confined to the
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Fig. 9. On the left the solution from the classical complementary problem formulation is shown. Here
the sliding velocity is confined to be in the 2D contact place. On the right the cone-complementarity
formulation (CCP) is shown. Observe in CCP that sliding velocity is now orthogonal to the contact
force.

2D contact plane. Furthermore, the polar cone keeps the velocity orthogonal to the contact
force. Combined those traits give this model many numerical benefits in terms of having
very fast iterative solvers with sub-linear convergence rates. Projected gradients methods was
initially explored and are similar in spirit to the project Gauss-Seidel methods we cover in this
work [Anitescu and Tasora 2010]. The accelerated projected gradient descent method (APGD)
is another such method with convergence rate O

(
1
𝑘2

)
where 𝑘 is the iteration number [Mazhar

et al. 2015]. In comparison to the proximal operator methods we present in Section 4.1 for the
NCP type of model they have O

( 1
𝑘

)
. A modified Fischer-Burmeister function can be used to

rewrite the CCP model into a root search problem and by applying a splitting strategy one
may develop Gauss-Seidel type solvers from this setting too [Daviet et al. 2011].
Hence, there are obvious performance benefits from this formulation of the contact forces.

The catch is that the “physics” is different from the classical model. As Figure 9 clearly shows,
as the tangential sliding velocity grows large the model will gain a positive normal component
based on the relative contact velocity, 𝑣�̂� > 0. In other words, if one has a stack of blocks and
pushes a block very fast, then it will try to lift of from the other blocks. The effect can be
limited with adding an adhesion term to the model, but it does not completely remove the
effect and adhesion will also further change the physical behavior.
Whether the physics of the NCP versus the CCP model is right or wrong is debatable as

friction is a system response and surface material interactions are therefore quite a complicated
matter to model and there is huge variation. The CCP are disliked by some as it feels like
a mathematical rewrite to the physics to get nice numerical properties, and it is loved by
others because the numerical traits the CCP model gains results in very fast solvers. Work has
been done on validating the CCP model in context of granular flows and here it shows good
agreement with reality [Mazhar et al. 2015].

31



SIGGRAPH ’21 Courses, August 09-13, 2021, Virtual Event, USA Andrews and Erleben

Recalling the Schur complement reduction technique we used to derive the reduced form in
Equation 9, then from

v = Ju+ , (55a)

Mu+ = J𝑇𝝀 +Mu + ℎf (55b)

one can derive the linear relationship between sliding velocity and contact forces as

v = A𝝀 + b . (56)

Substituting this equation into the CCP model, we observe that the model is equivalent to the
first order optimality conditions of a second order cone problem (SOCP), which is given by

𝝀∗ ≡ arg min
𝝀∈F𝜇

1
2𝝀

𝑇A𝝀 + 𝝀𝑇b . (57)

Notice here that both the objective function and the constraints are written as convex second
order cones. This insight opens up for the application of a vast majority of numerical methods
for solving the CCPmodel, such as alternating directionmethod of multipliers (ADMM) [Tasora
et al. 2021]. One may alternatively have used the Schur complement to reduce to a quadratic
objective function in v instead of 𝝀 as was done in [Acary et al. 2011]. The ADMM method
may be used on this alternative velocity form of the CCP model too [Daviet 2020].
We do not cover solvers for CCP frictional contact models in these notes. However, with the

material presented later on iterative methods for NCPs, LCPs, BLCPs and proximal operators,
the reader should be off to a good start to implement numerical methods for CCP type models
too.

1.9 Constraint Stabilization
The system in Equation 8, and its reduced form in Equation 9, are linear approximations
of a non-linear dynamical systems. Therefore, they are prone to numerical drift, especially
when combined with the low-order numerical integration methods that are commonplace
in computer graphics applications. Also, an exact numerical solution of the linear system
is practically impossible, which again contributes to the drift. In the context of contact
simulation, this results in both position and velocity level artifacts. At the position level,
the interpenetration between bodies will increase since non-interpenetration constraints
cannot be exactly resolved, whereas at the velocity level, bodies will begin to slide rather than
stick. Furthermore, if discrete collision detection is used to generate contact constraints, this
means that collision events may not be detected at the time of impact and hence we cannot
assume that bodies will be in a non-interpenetrating state at the start of a time step.
The issues described above will cause a multibody system to gradually violate the constraint

manifold. Recall that the manifold is an invariant set defined by the gap function, where
𝜙 (q) ≥ 0. An approach to solve this problem would be to use a feedback rule to bring the
system back to a valid state, where the constraints are not violated. Giving some physical
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meaning to this idea, a spring in the constraint space may be used to “push” or “pull” the
multibody system back to the constraint manifold. If there is no constraint violation, then
this constraint spring generates no forces. However, if there is a constraint violation (e.g.,
𝜙 (q) < 0), then the spring generates a force to restore the configuration back to the constraint
manifold. Essentially, the spring force stabilizes the constraint.
To realize this behavior, let us assume that all constraint forces are generated by an implicit

Hookean spring, such that
λ+ = −𝑘𝜙+ − 𝑏𝑣+ . (58)

Here, 𝜙 is the gap function, 𝑣 is the relative velocity in constraint space, and 𝑘 and 𝑏 are the
stiffness and damping coefficients of the spring. Note that we again adopt the convention that
□+ is an implicit variable.
Equation 58 is in fact an example of the well known Baumgarte stabilization [Baumgarte

1972] technique. Approximating the constraint error term by 𝜙+ = 𝜙 +ℎ𝑣+, the spring equation
can be rewritten as

λ+ + (ℎ𝑘 + 𝑏) 𝑣+ = −𝑘𝜙,
which is further simplified by dividing both sides by (ℎ𝑘 + 𝑏), such that

𝑣+ + 1
ℎ𝑘 + 𝑏λ

+ = − 𝑘

ℎ𝑘 + 𝑏𝜙.

Finally, recall that 𝑣+ = Ju+, and further simplification of the above equation yields:

Ju+ +
(

1
ℎ2𝑘 + ℎ𝑏

)
︸       ︷︷       ︸

𝜖

𝝀+ =

(
ℎ𝑘

ℎ𝑘 + 𝑏

)
︸    ︷︷    ︸

𝜐

−𝜙
ℎ
. (59)

Note that Equation 59 resembles Equation 4, but introduces a feedback term on the right-hand
side of the equation. This term attempts to reduce the constraint violation 𝜙 by applying a
constraint-space spring impulse in order to resolve the error by end of the time step. However,
the portion of the constraint error being reduced at each step is modulated according to
𝜐, which is commonly known as the error reduction parameter (ERP). Observe that setting
𝜐 = 1 will encourage the feedback rule to produce a constraint velocity that reduces all of the
constraint error in a single step. Also, observe that a portion of the implicit constraint force 𝜆+
is now being mixed with the kinematic constraint in Equation 59, and it is often referred to as
the constraint force mixing (CFM) term.
The 𝜖 and 𝜐 parameters may be specified directly, which is intuitive from a numerical

standpoint. Whereas adjusting 𝑘 and 𝑏 and then generating 𝜖 and 𝜐 from the spring coefficients
is perhaps amore physically intuitive approach, since there is some notion that these behave like
material properties of the contact. Additionally, parameters 𝑘 and 𝑏 may be tuned independent
of the time step ℎ.
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The stabilization parameters can be tuned differently for each of the 𝑚 constraints and
assembled into the diagonal matrices:

Σ =


𝜖1

𝜖2
. . .

𝜖𝑚

 , Υ =


𝜐1

𝜐2
. . .

𝜐𝑚

 .
Reassembling the linear system from Equation 8 and accounting for the new stabilization
terms gives a multibody system with constraint stabilization:[

M −J𝑇
J Σ

] [
u+
𝝀+

]
=

[
Mu + ℎ f
−Υ𝜙

ℎ

]
. (60)

The system in Equation 60 includes not only a feedback term to reduce the positional
constraint errors, but also the diagonal matrix Σ in the lower right block. This has the added
benefit of improving the conditioning of the matrix, which is especially beneficial during
simulations involving complex contact where the linear system would otherwise become
degenerate due to redundant rows in the Jacobian matrix. It can also be shown that the linear
system in Equation 60 is positive definite, assuming that 𝜖 > 0 for all constraints.

1.10 Soft vs. Rigid Body
Many of the methods we cover for solving the frictional contact problem can be extended
from rigid bodies to soft bodies. For this introductory text on solvers we have taken the typical
approach and presented the ideas using rigid body notation. Below we will first describe how
equation and matrices of a full rigid body system look and afterwards we will describe the
changes for a soft body system. The most important differences is that for soft bodies one
typically use more implicit time discretizations and the number of variables are much larger.

1.10.1 Assembling the Matrices for a Rigid Body System. We will here for completeness explain
how to construct the matrices M and J and the vector f that holds external and gyroscopic
force terms when considering a rigid body system with multiple rigid bodies and multiple
contacts. This section can be skipped if reader is already familiar with those aspects.
Let us consider the 𝑘 th contact point. The contact normal is given by �̂�𝑘 and the two

orthonormal vectors spanning the contact plane are 𝑡𝑘 and 𝑏𝑘 . The indices of the two bodies
meeting at the contact is 𝑖 and 𝑗 , where we assume that 𝑖 < 𝑗 . We will adopt the convention
that �̂�𝑘 is pointing from body 𝑖 to body 𝑗 . The vector arms from the center of mass of the
bodies to the point of contact is given by r𝑘𝑖 and r𝑘 𝑗 respectively. The relative contact point
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velocity can now be written as follows
𝑣�̂�𝑘
𝑣𝑡𝑘
𝑣
𝑏𝑘

𝑣𝜏𝑘

 =

[
−C𝑇

𝑘
−

(
r𝒌𝒊
×C𝑘

)𝑇 C𝑇
𝑘

(
r𝒌𝒋
×C𝑘

)𝑇
0𝑇 −�̂�𝑇

𝑘
0𝑇 �̂�𝑇

𝑘

] 
v𝑖
𝜔𝑖
v 𝑗
𝜔 𝑗

 (61)

where
C𝑘 =

[
�̂�𝑘 𝑡𝑘 𝑏𝑘

]
. (62)

In the equations above we included the angular spin around the normal axis, 𝑣𝜏𝑘 , to demonstrate
how this term can be included. If one only cares about planar friction then the bottom row of
our equation can be dropped. Observe we can get the rolling spin around the tangent vectors
included by replacing the �̂�𝑇

𝑘
with C𝑇

𝑘
in the last row. Doing this the left-hand side contact

velocity vector would gain two more components being the spin-velocities around 𝑡𝑘 and 𝑏𝑘 .
The tangent plane directions 𝑡𝑘 and 𝑏𝑘 are often computed by picking 𝑡𝑘 to be in the direction

of sliding and letting 𝑏𝑘 be orthogonal to 𝑡𝑘 . For isotropic friction modeling it does not matter
much how the vectors are computed. In Section 4.2 we discuss other approaches for computing
these vectors in the case of anisotropic friction.
Defining the blocked notation

v𝑘 =


𝑣�̂�𝑘
𝑣𝑡𝑘
𝑣
𝑏𝑘

𝑣𝜏𝑘

 , u𝑖 =
[
v𝑖
𝜔𝑖

]
, u 𝑗 =

[
v 𝑗
𝜔 𝑗

]
, (63)

and

J𝑘,𝑖 =
[
−C𝑇

𝑘
−

(
r𝒌𝒊
×C𝑘

)𝑇
0𝑇 −�̂�𝑇

𝑘

]
, J𝑘,𝑗 =

[
C𝑇
𝑘

(
r𝒌𝒋
×C𝑘

)𝑇
0𝑇 �̂�𝑇

𝑘

]
(64)

and assembling a full system of all 𝐾 contacts and 𝑁 bodies we have



v1
...

v𝑘
...

v𝐾

︸︷︷︸
v

=


...

...
...

...
...

0 · · · 0 J𝑘,𝑖 0 · · · 0 J𝑘,𝑗 0 · · · 0
...

...
...

...
...

︸                                        ︷︷                                        ︸
J



u1
...

u𝑖
...

u 𝑗
...

u𝑁

︸︷︷︸
u

. (65)
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The 𝑖th rigid body has the center of mass position r𝑖 and the orientation given by the unit
quaternion 𝑄𝑖 ≡ (𝜙𝑖,𝜓𝑖, 𝜃𝑖, 𝜉𝑖) together with the mass𝑚𝑖 and local body-frame inertia tensor
IBF𝑖 . The local body frame inertia tensor must be updated to reflect the world-frame inertia
tensor

IWF𝑖 = R𝑖IBF𝑖R
𝑇
𝑖 (66)

where R𝑖 is the rotation matrix corresponding to 𝑄𝑖 . Defining the mass-block notation

M𝑖 =

[
𝑚𝑖I3×3 0

0 IWF𝑖

]
. (67)

Now the assembled mass matrix reads

M =


M1 . . . 0
...

. . .
...

0 . . . M𝑁

 . (68)

Let fext𝑖 and 𝜏ext𝑖 be the force and torque accumulators of all external force types acting on the
𝑖th body. Using the block-notation

f𝑖 =
[

fext𝑖
𝜏ext𝑖 − 𝜔𝑖 × IWF𝜔𝑖

]
, (69)

for the external and gyroscopic forces we assemble the f vector,

f =
[
f𝑇1

... f𝑇
𝑁

]𝑇
. (70)

Defining the blocked notation

q𝑖 =
[
r𝑇𝑖 𝑄𝑇𝑖

]𝑇 (71)

then the global assembled version reads

q =
[
q𝑇1 . . . q𝑇

𝑁

]𝑇
. (72)

Notice that the dimension of q and u mismatch and this causes a problem for the generalized
kinematic relation, ¤q = u. The problem can solved introducing the blocked matrix 𝑄𝑖 ≡
(𝜙𝑖,𝜓𝑖, 𝜃𝑖, 𝜉𝑖)

H𝑖 =
1
2


−𝜓𝑖 −𝜃𝑖 −𝜉𝑖
𝜙𝑖 𝜉𝑖 −𝜃𝑖
−𝜉𝑖 𝜙𝑖 𝜓𝑖
𝜃𝑖 −𝜓𝑖 𝜙𝑖

 (73)
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and defining

H =


I3×3 0

H𝑖
. . .

I3×3
0 H𝑁


. (74)

The discretized kinematic relation leading to the position update is now given by

q+ = q + Δ𝑡Hu , (75)

which must always be followed by a normalizing of all 𝑄𝑖 ’s to keep them a proper rotation.

1.10.2 Assembling the Matrices for a Soft Body System. For simulation of soft bodies the
equations of motion changes slightly as we need to add elastic forces. Elastic forces can be
computed using many different approaches ranging from particle systems to finite element
methods. A rather large collection of works devoted to elastic body simulation exist in the
field of computer graphics. Below we merely recap a few simple ideas that suffices for us to
talk about contact forces for soft bodies and how this is different from the rigid bodies. For a
more in depth treatment we refer the interested reader to the SIGGRAPH courses by Sifakis
and Barbic [2012] and Kim and Eberle [2020]. For a soft deformable model, the finite element
method results in the second order differential equation

M¥q + B¤q + Ku = f + J𝑇λ. (76)

Here q is the concatenation of the positions of all the nodes in the mesh, u is the displacement
given by the difference from current deformed nodal positions q and undeformed positions q0,
and f is the external forces acting on the soft body. The matrixM is the mass matrix of the soft
body, B is the damping matrix and K is the stiffness matrix, and J is the contact Jacobian and λ
contains the Lagrange multipliers for the contact forces. Observe that if we are in 3D and have
𝑁 nodes in a linear tetrahedral mesh then the dimensions of the introduced quantities are
q, u, f ∈ R3𝑁 and M,B,K ∈ R3𝑁×3𝑁 . If we have 𝐾 contacts the the J ∈ R3𝐾×3𝑁 and λ ∈ R3𝐾 .
We now already observe several differences compared to the rigid body case namely that

there are no orientation or angular spin present in these equations, as such they are simpler as
we do not need to deal with things such as quaternions. On the downside the dimensionality of
the equation has exploded compared to the rigid body case. A small simple soft body can easily
have more than 1000 nodes, hence the dimensionality of the equations is at least 2-3 orders of
magnitude larger. Hence, solving the free motion of soft bodies is much more demanding than
the rigid body case simply because there are more variables. Lastly we see a new force-type in
the equations, the elastic forces. In our simple setup, we used the most simple type of elastic
force, namely a linear isotropic elastic model. Proper elastic modeling is difficult and there
exist many different elastic models, which one to pick and use is a whole subject in itself. The
elastic forces can be tricky to compute too, but the good news is that the soft elastic nature of
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the forces numerically dampen the response between nodes in the mesh. That is deformations
in a soft body propagate like a wave through the body. This means that the effect of contact
forces too are subject to this wave propagation nature. This is actually how real objects bounce.
The nice thing compared to rigid bodies is that the numerics often gets better whereas in rigid
bodies all forces in contact are instantly affecting each other, in soft bodies there is a delay,
one can say the contact forces act more locally compared to rigid bodies where the effect is
more global on the whole system.
We will now perform a typical time discretization using finite difference approximations.

First we observe that time derivative of the velocity is the acceleration, ¤u = ¥q, and so using
first order Euler,

¤u ≈ u+ − u
ℎ

, (77)

where u and u+ are the generalized velocities at time 𝑡 and 𝑡 + ℎ, respectively. Similarly,
integrating the generalized positions gives:

q+ ≈ q + ℎu+ . (78)
Substituting the above finite difference approximations produces a velocity-level formulation
of the dynamics equations, such that

M
u+ − u
ℎ
+ K

(
q+ − q0

)
+ Bu+ = f + J𝑇λ . (79)

Further manipulation, and converting forces to impulses by 𝝀 = ℎλ, gives the form,

Mu+ −Mu + ℎK
(
q + ℎu+ − q0

)
+ ℎBu+ = ℎf + J𝑇𝝀 . (80)

Finally,
Wu+ = w + J𝑇 𝝀, (81)

where
W = M + ℎB + ℎ2K, (82a)
w = Mu + ℎ (f − Kq + Kq0) . (82b)

TheWmatrix is sparse block symmetric and positive definite matrix. Thus, if we ignore contact
forces momentarily then the linear system can be solved effectively using a numerical method
such as the conjugate gradient method. Having found u+ we may do the position update

q+ = q + ℎu+. (83)
Adding contact forces to this is straightforward done by adding non-penetration constraint
and Coulomb friction law as we have outlined previously. For instance, when setting up the
LCP model, we will have the system matrix defined as A ≡ JW−1J𝑇 , and the right-hand-side
vector will be b ≡ JW−1w. If we compare the equations to the rigid body counter part we see
that the change is thatM in the rigid body case is replaced withW in the soft-body case. What
does this imply? ClearlyW is of much higher dimension, and the stiffness matrix K may be
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computational heavy to actual assemble, further the inverse of W is wanted. One remedy is to
use a lumped mass matrix and explicit time-discretization of the elastic forces in which case
K drops out from w andW becomes a diagonal matrix. This however is often too limited as
large time-step sizes causes instabilities in such a semi-implicit time-discretizaton approach.
So far, our treatment of the soft body simulation only contained a single soft body when

adding multiple soft bodies to the system the equation of motion is replicated for each soft
body. The tricky thing is that different soft bodies can have a different number of nodes and this
means the block-size will vary when assembling all matrices into one system. As an example
imagine we are given three soft bodies and their mass matrices areM0,M1, andM2 then the
system mass matrix will be

M ≡

M0 0 0
0 M1 0
0 0 M2

 . (84)

Here the blocks will be of different size if the number of nodes in the soft bodies are different.
Note that if consistent mass matrices are used the assembled mass matrix is not a diagonal
matrix. Similar for the damping and stiffness matrices. The contact Jacobian matrix is slightly
different if there are 𝐾 contacts and the number of nodes in the soft bodies are 𝑁0, 𝑁1, and 𝑁2
then J ∈ R3𝐾×3 (𝑁0+𝑁1+𝑁2) . Each blocked row will have a form similar to Equation 20.
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2 CONTACT GENERATION
Contact occurs when pairs of bodies touch inside a physics simulation. However, rather than
simply touching, more likely is the scenario where the bodies actually intersect due to some
overlap between their collision geometries. In this section, we discuss methods for generating
contact points and normals for a variety of geometries.
The geometry used to determine whether there is a collision (or not) between two bodies

can have a significant impact on the behavior of contact simulations. Often, performance is
a principal consideration when selecting the type of shape used to represent the geometry
of a simulation body, in which case simple shapes may be used to approximate the overall
shape. We cover those in Section 2.1. However, accuracy and fidelity are also important
considerations for certain applications, in which case geometrical representations with more
detail are required, and for such cases we cover mesh-based representations and signed
distances fields in Section 2.2 and Section 2.3 respectively.
The algorithms used to detect collisions between shape representations are specific to a pair

of geometries. Throughout this section, we also provide algorithmic details about tests for
various geometry combinations. In addition to determining whether or not a collision exists,
the algorithms must also be extended to compute a contact normal and position. The contact
position is a location that represents the overlapping volume of the two bodies, whereas the
contact normal is the direction of a restorative force that is applied to separate the two bodies.
In the case of the normal, it is typically useful to decide on a convention with respect to the
order of bodies. For instance, we assume that contact normals are always directed from the
first body toward the second body.
Essentially a contact point models proximity information between two objects. We label

the objects A and B. Contact points are often used to model touching contact states as well as
separation and penetrating states. The touching state is ideal for giving an intuitive description
of the information associated with a contact point. Hence, we will use this state to introduce
concepts. Conceptually a contact point provides three different kinds of information: a position,
a normal, and a penetration (gap) measure. For continuous contact regions between two
touching objects there are infinitely many points of contact. Therefore, a contact point can
in general be considered as a sample point of those infinitely many points of contact. For
mesh-based methods the intersection points between the local mesh features of the two objects
are often used as the contact points.
Position: In a touching state a contact point has a reference to the two objects in contact,

and specifies the actual points of the two objects in contact. We describe the common touching
point, p ∈ R3 of the two surface points with respect to two objects on the surface of each
object, p𝐴, p𝐵 ∈ R3. At the ideal touching state, one has p = p𝐴 = p𝐵 . In case of separation or
penetration this equality breaks and one may define p = 1

2 (p𝐴 + p𝐵) or use some weighting of
p𝐴 or p𝐵 based on volume or size of the objects. Positions are used as the point of action when
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applying contact forces, and a consequence of using p𝐴 and p𝐵 is that ghost torques may be
introduced if p𝐴 ≠ p𝐵 .
Normal: In a touching state, the surfaces of two smooth objects will have unique parallel

outward unit normals at any shared point on their respective surfaces. Let the two normals be
�̂�𝐴, �̂�𝐵 that are oriented in opposite directions, such that �̂�𝐴 = −�̂�𝐵 . Often only one normal �̂�
is associated with a contact point. Typically, implementations use a convention to use either
�̂� = �̂�𝐴 or �̂� = �̂�𝐵 as the normal associated with a contact point. For the case of penetration,
the concept of a normal is perhaps less intuitive. Ideas such as using the minimum distance
vector or minimum translational distance may instead be used to define �̂�. To make matters
worse, for non-smooth surfaces, �̂�𝐴 and �̂�𝐵 become indeterminate. Even if they are well-
defined, one may not have �̂�𝐴 = −�̂�𝐵 . Nevertheless, the normal is computed and used to apply
non-interpenetration forces in the correct direction.
Penetration Measure: The penetration is defined to be zero for touching, positive for

separation, and negative for intersection. This follows the same convention of the gap function
𝜙 introduced in Section 1. Conceptually, penetration is the distance one would need to move
along �̂� to bring the two objects into a touching state. The measure is often used to add
stabilization terms to counter drift errors. Hence, it need not be a distance measure, but some
monotone function that penalizes the constraint violation. For instance, volume overlap could
alternatively be one such measure.

2.1 Analytic Shapes

𝑟

𝐜

𝐜

𝐡௬

𝐡௭
𝐡௫

Simple shapes may be used as an approximate representation for the
surface of an object.While they are often used as elements in a hierarchical
data structure, like bounding volume hierarchies, to perform cheap and
conservative intersection tests, they are also commonly used as the
fundamental geometry for many collision detection tasks. Implicit surface
representations are common examples of collision proxies, such as spheres
and planes. Whereas related surface representations may be used in other
cases, such as capsules or boxes. In this section, we consider some of these
simple shapes– spheres and boxes– and how to generate contacts using
them.
Spheres are perhaps the most efficient 3D shapes for collision tests, both
in terms of storage and computational efficiency. A sphere is defined by a
center point c ∈ R3 and radius 𝑟 ∈ R, as shown in the figure on the right.
Boxes are also popular due to their efficiency. Specifically, oriented
bounding boxes (OBBs) that follow the local coordinate system of the
object can be adjusted to give a good approximation of the visual geometry
of an object. An OBB can be defined by center point c ∈ R3, rotation matrix R ∈ 𝑆𝑂 (3) and
half-width extents along the local axes h ∈ R3, as shown in the figure on the right.
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Fig. 10. A sphere-sphere intersection.

2.1.1 Sphere-Sphere Intersection. Assuming that the center position of two spheres share
common reference frame, the intersection test involves simply computing the distance between
the two centers positions, c1 and c2, and checking if the distance is less than the sum of the
radii 𝑟1 and 𝑟2. In other words, if the gap function is negative or zero, such that

𝜙 = ∥c2 − c1∥ − (𝑟1 + 𝑟2) ≤ 0 ,

and if the above condition is true, a contact is generated. The contact normal for a sphere-
sphere intersection is aligned with the vector between the two centers, and the unit length
normal is computed as

�̂� =
c2 − c1

∥c2 − c1∥
.

Note that special consideration should be given to the degenerate case where c1 = c2, and in
this case a good option is to simply specify an axis-aligned normal vector. The contact point is
located anywhere along the line connecting the two centers. A common choice is the center of
the overlapping region:

p =
1
2
(c2 − 𝑟2�̂�) +

1
2
(c1 + 𝑟1�̂�)

Other options for computing the contact point include using a radius-weighted sum of the
distance between the centers, or a point on the surface of either sphere.

2.1.2 Sphere-OBB Intersection. The intersection test between a sphere and an OBB requires
first transforming the center of the sphere into the local coordinate system of the box:

clocal = R−1
OBB(csphere − cOBB)

Then, the closest point g on the box is found by considering the extents h in each axially
aligned direction, and each coordinate 𝑖 ∈ {𝑥,𝑦, 𝑧} of the closest point is compute as
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shallow penetration deep penetration

Fig. 11. Sphere-OBB intersection showing the shallow (left) and deep (right) penetration. Note that
the 𝑧-dimension is not shown.

g𝑖 =

−h𝑖 , −h𝑖 > clocal,𝑖
h𝑖 , h𝑖 < clocal,𝑖
clocal,𝑖 , otherwise

(85)

If the distance from the closest point to the sphere center is less than the radius of the sphere,
such that ∥g − clocal∥ < 𝑟 , then there is an intersection. However, special consideration must
be given to the scenario where the sphere center is entirely inside the box, in which case
g = clocal based on Equation 85. Thus, there are two cases to consider when computing the
contact normal: shallow and deep penetration.
Shallow penetration occurs if the transformed sphere center lies outside the box extents in

at least one dimension. The penetration 𝜙 is computed as the difference between the distance
∥g − clocal∥ and the sphere radius:

𝜙 = ∥g − clocal∥ − 𝑟
The normal may be simply computed as the unit vector that points from the sphere center to
the closest point transformed in the global reference frame:

�̂� = ROBB
g − clocal
∥g − clocal∥

Deep penetration is the case when the transformed sphere center lies entirely inside the
box. This is somewhat of an extreme scenario for contact simulation, but nonetheless should
be handled if robust collision is desired. The collision detection algorithm must determine
which of the box faces is closest to clocal. This is easily tested since the sphere center has been
transformed to the local coordinate system of the box, and the test reduces to determining
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which axis-aligned distance test returns the minimum penetration:

𝜙 = −min
(
|h𝑥 − clocal,𝑥 |, |h𝑦 − clocal,𝑦 |, |h𝑧 − clocal,𝑧 |

)
It is trivial to determine the closest face by considering the sign of the term that minimizes the
above function. The point g is then computed by projecting the local sphere center onto the
closest face. For example, in Figure 85, the closest point on the box surface is computed by
moving the sphere center to the −𝑥 face, such that

g =
[
−h𝑥 clocal,𝑦 clocal,𝑧

]𝑇
.

Similarly, the normal of the closest box face also determines the contact normal. For example,
in the case of the deep penetration example from Figure 85, the local contact normal is

�̂� =
[
−1 0 0

]𝑇
,

and the world space normal is computed as ROBB�̂�. Finally, the contact point for both the
shallow and deep penetration case may be located anywhere in the overlapping region between
the OBB and the sphere. For simplicity, the closest point on the box is transformed to the
global coordinate system:

p = ROBBg + cOBB .

2.1.3 OBB-OBB Intersection. Testing for intersection between two OBBs is a special case of
testing for intersection between two convex hulls. There are several algorithms that can be
considered here, such as the Gilbert–Johnson–Keerthi (GJK) distance algorithm [Gilbert et al.
1988] and the separating axis theorem (SAT) [Boyd and Vandenberghe 2004]. The latter is
often preferred since the SAT allows efficient identification of the contact surfaces, as well as
the penetration depth. Although, GJK may be combine with the expanding polytope algorithm
(EPA) [Van Den Bergen 2003] to compute the overlap.
The first step is to determine if an intersection exists between the boxes. The SAT states that

two convex objects do not intersect if a plane, onto which each the geometry of each convex
shape is projected, can be found where they do not overlap. Recall that the orientation of a
plane is determined by a normal vector that is perpendicular to the plane. For the OBB-OBB
intersection test, the following cases are considered for the separating plane orientation:
• The 3 face normals from box A ;
• The 3 face normals from box B ;
• The 9 normals formed by computing the cross-product of all edge pairs combining box A
with box B.

Given two OBBs A and B, the tests involve projecting the vector between the box centers,
d𝐴𝐵 = c𝐵 − c𝐴, onto the separating axis of the plane, 𝑙 . Then, we check if the sum of the
projected box extents exceeds it. Due to symmetry, we can avoid additional tests for the
directional alignment of vectors by using the absolute value of the projections, which results

44



Contact and Friction Simulation SIGGRAPH ’21 Courses, August 09-13, 2021, Virtual Event, USA

𝐴

𝐵

𝐜

𝐝

𝐡
𝐡

𝑙መ
𝐝 ⋅ 𝑙መ

𝐡 ⋅ 𝑙መ 𝐡 ⋅ 𝑙መ
𝐜

Fig. 12. A separating axis test applied to two boxes in 2D. The vector between the box centers, d𝐴𝐵 , is
projected onto the axis 𝑙 , and similarly for the box extents h𝐴 and h𝐵 . Since the sum of the absolute
values of the projected extents is less than |d𝐴𝐵 · 𝑙 |, there is a separation and hence no collision.

in the separation equation

𝑠 = |d𝐴𝐵 · 𝑙 | −
(
|h𝐴 · 𝑙 | + |h𝐵 · 𝑙 |

)
. (86)

If an axis can be found such that 𝑠 > 0, then there is no intersection and thus there is no need
to continue. Otherwise, if 𝑠 ≤ 0 for all SAT tests, then an overlap exists and a contact will be
generated.
The next step in OBB-OBB intersection requires determining which of the tests resulted in

the shallowest penetration. For this purpose, specific edge pairs and faces giving a minimum
separation are carefully tracked during the overlap tests. Once the test case has been identified,
there are two cases to consider for computing the contact normal and point: i) an edge-edge
intersection, or ii) a face intersection.
Edge-edge intersection occurs if the shallowest separation is due to a separating plane
computed from an edge-edge pair. In this case, the contact normal is computed as the cross-
product of the edges. That is, for edge eA from body A and edge eB from body B, the contact
normal is computed as

�̂� =
e𝐴 × e𝐵
∥eA × eB∥

. (87)

Note that here we use that convention that edges are vectors between edge vertices. The
normal is computed assuming all edge vertices are expressed in the global coordinate system,
and otherwise the normal must be rotated from the local coordinate system. Only a single
contact point is generated for an edge intersection. The contact point is computed by finding
the closest points on each edge, such that

p𝐴, p𝐵 ← ClosestPoints (e𝐴, e𝐵) .
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Finally, the penetration is then computed by as the distance between the closest edge points:
𝜙 = −∥p𝐴 − p𝐵 ∥ .

Alternatively, the contact point may be computed as the midpoint of the overlapping region:

p =
1
2
(p𝐴 + p𝐵) .

Face intersection occurs between a face of one box and a combination of geometrical features
from the other box (vertices, edges, or faces). However, rather than a single contact point, a face
intersection can generate up to eight contacts depending on the configuration of the bodies.
The first step in this case is to determine which of the faces, from either box, resulted in the
shallowest penetration. This can be done efficiently by carefully tracking the separation values
during the SAT tests and choosing the face that maximizes 𝑠 , assuming that all tests return a
negative separation. The responsible face is denoted as the reference face, and so it remains to
determine the incident face on the other box that intersects it. Without loss of generality, let
us assume that the reference face belongs to box A. The incident face 𝑓 is found by searching
the faces of box B for the one that most opposes the reference face. This is achieved by finding
the face on box B whose normal �̂� 𝑓 minimizes the dot product with the reference face normal,
�̂�ref, such that

𝑓 = arg min
𝑖∈𝐹B

�̂�𝑖 · �̂�ref ,

where 𝐹B are the faces of the box from body B. The incident face is then clipped to the sides
of the reference plane using a polygon clipping algorithm (such as the Sutherland-Hodgman
algorithm [Sutherland and Hodgman 1974]). For this purpose, a transformation of box B into
the local coordinate system of box A is recommended, since in this reference frame the clipping
planes are all axis aligned. Each clipped edge vertex on the incident face that lies below the
reference face plane generates a contact. A 2D example is shown in Figure 13.
The normal for each generated contact 𝑗 is the normal of the reference face:

�̂� 𝑗 = �̂�ref

The contact point is found by projecting the clipped edge vertices onto the reference plane,
but only for those edges that intersect the plane. Recall that if clipping occurs in the local
coordinate frame of the reference box, then projection simply requires changing one of the
coordinates of the clipped edge vertex to match the position of the reference face. For example,
if the reference face normal is +𝑦 from box A, then for clipped edge vertex x̄, the vertex
projected onto the reference face has position

p =
[
x̄𝑥 hA,𝑦 x̄𝑧

]𝑇
,

where the 𝑦 coordinate is assigned h𝑦 from the half-width extend vector of box A. The
penetration is then computed as the projection distance, which for the +𝑦 face is:

𝜙 = −|x̄𝑦 − h𝑦 | .
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Fig. 13. Generation of contacts for OBB-OBB face intersection. This 2D example shows a collision
between an edge of the grey box and the +𝑦 face of the blue box. The edge vertices are clipped to the
extents of the reference plane, and the clipped vertices are then projected to the reference plane to
generate the contact points p1 and p2.

2.2 Mesh-based Representations
In computer graphics, objects are often represented by polygonal meshes and in particular
triangle meshes are very popular for representing the shape of objects. This section briefly
presents how to compute contact points for such representations.
In practical implementations, mesh-based contact generation is done in several stages. In a

first stage, a broad phase collision detection method determines triangles that are sufficiently
close and which pair-wise triangles need further processing. Often, bounding volume hierar-
chies or spatial hashing are the common tools applied in this stage. For the remainder of our
discussion on mesh-based contact generation, we assume that these initial stages have been
completed and instead focus on how the actual contact points are generated.
For the mesh-based contact point generation the positions and normals are defined directly

frommesh features such as vertices (𝑉 ), edges (𝐸) or faces (𝐹 ) of the mesh surfaces. For instance,
pA and pA can be computed as intersection points of mesh features, or from closest points
between mesh features. As we saw with box-box collisions, normals can be computed from
a face normal or as a cross product of two edge vectors. Hence, the types of mesh features
are often associated with the contact point and used to classify the type of the contact point.
For instance, one may write a contact as (𝑉 , 𝐹 ) or (𝐸, 𝐸) to identify a vertex-face generated
contact point or edge-edge generated contact point, respectively.
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Fig. 14. Corner points of polygonal contact areas can be represented by pairs for mesh features. The
vertex-face (𝑉 , 𝐹 ) and edge-edge (𝐸, 𝐸) combinations forms a sufficient set of pair-types.

The illustration in Figure 14 on the right shows the concept of feature pairs. The blue contact
points are defined by intersection points of mesh vertices, edges and faces from the two objects
A and B. The drawing has two contact points of type (𝑉 , 𝐹 ) and two contact points of type
(𝐸, 𝐸). There is a total of six possible types. They are rarely all used as some of them can
be considered sub-types of each other. For instance, a (𝐹, 𝐹 ) type can be broken down into
multiple (𝑉 , 𝐹 ) type contact points. Associating the mesh features with a contact point has the
benefit of being able to track a contact point over time simply by using labels of features and
objects. Feature labels are convenient to test for redundancy without having to use floating
point comparisons.
Figure 14 illustrates the ideal case where there is no penetration or separation between

the two objects; they are simply touching. However, due to the nature of the discrete time
stepping scheme we introduced earlier in Section 1, it is expected that objects will be slightly
separated or that penetrations will exist. Hence, it becomes tricky to define what constitutes a
contact point. In many practical implementations, it is common to simply take mean positions
of closest points between vertex and face pairs or between edge and edge pairs. The distance
between closest points is then used as a measure of penetration.

2.2.1 Continuous Collision Detection of Mesh Features. Rather than dealing with the difficulties
that arise from using a discrete collision detection scheme, a more intelligent approach is to
use continuous collision detection (CCD). This type of method processes every collision event
that might occurs for a given time span (i.e., a time-step). There are two flavors of continuous
collision detection: (i) look forward in time, from the current instance of invocation to the
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next expected instance, or (ii) look backward in time, from the current instance of invocation
to the previous instance.
The initial stages of CCD often use a time-swept volume around the geometric features of

the mesh-based objects. If the volumes intersect, then a more detailed computation is initiated
to find the time of first contact, at which point one can simply compute normals and contact
points as outlined above.
The CCD can be used in the discrete time-stepping method in many ways. The smallest

computed time-of-impact can be used as a limit on how big a time-step one can use. Alterna-
tively, one can take the CCD computed normals and points and warp them to the start of the
time-step. In the case of the latter, a heuristic is required to measure the penetration depth of
an earlier instant.
When looking backward in time we are actually seeking the first point of contact. This point

in space is attractive for simulation methods, since it implies the point in time to which we
should “rewind” the simulation in order to avoid penetration. Let us dig a bit deeper into how
to predict this point using geometric features of the mesh.
Assuming that the time-step is small, it is justifiable that the motion between two instances of

time may be considered linear. However, the errors based on this assumption increase with the
size of the time-step, or O(ℎ). From a convergence theory point of view, we can simply let the
time-step go to zero and the approximation would be exact. In practice, this is impossible, but
the error can be made so small that it is negligible compared to errors coming from numerical
inaccuracies and round off. Other assumptions about the motion can sometimes be made, such
that it is a screw motion, which is commonly done for rigid bodies and can allow for larger
time-steps in practice. However, we limit the assumption to linear motion for small time-steps
since the method we outline should be sufficiently general to work for both rigid and soft
bodies.
We can compute the space swept by a single triangle over the time-step. Consider that the

three vertices of a triangle move with velocities u0, u1, and u2. Then, for a forward prediction
scheme and based on the linear motion assumption, the triangle will have candidate positions
at the next time step given by

x′0 = x0 + ℎu0, (88a)
x′1 = x1 + ℎu1, (88b)
x′2 = x2 + ℎu2 . (88c)

However, for a backward prediction scheme, the candidate positions would be

x′0 = x0 − ℎu0, (89a)
x′1 = x1 − ℎu1, (89b)
x′2 = x2 − ℎu2 . (89c)
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In the case of backward prediction, we know the exact candidate position without having to
compute them as above. Instead, the linear velocity may be computed as

u0 =
x0 − x′0
ℎ

, (90a)

u1 =
x1 − x′1
ℎ

, (90b)

u2 =
x2 − x′2
ℎ

. (90c)

A simple preliminary test would be to create two axis aligned bounding boxes (AABBs) that
enclose the triangles– one using the current positions and the other using the candidate
positions– and test them for overlap. Only if the bounding boxes overlap can there be a contact
that occurred between the mesh features during the interval ℎ.
The next step is to examine all possible contact types for the triangle pair. Specifically, (𝑉 , 𝐹 )

and (𝐸, 𝐸) contacts. In some approaches, like the ones based on bounding volume hierarchies,
the triangle pairs are split into sub-types. Whereas for other approaches, like spatial hashing,
they work directly with the mesh feature pairs.
Due to our assumption of linear motion over the time interval, ℎ, the time of contact is

characterized by either: (i) the vertex lying in the face plane in the case of a (𝑉 , 𝐹 ) contact, or
(ii) by two edges being co-planar in the case of an (𝐸, 𝐸) contact. Regardless of the case, we
seek a point in time where four points all lie in the same plane.

2.2.2 Continuous Collision Detection of Face-Vertex Pair. The idea is to use three points to
compute a plane normal, and then use one of the three points to find a distance between
the plane and the origin. Finally, the fourth point is used for a point in the plane test. For
convenience, in the case of the (𝑉 , 𝐹 ), let us label the points of the triangle in counterclockwise
order: x1, x2, and x3 and the point of the vertex x4. In the case of an (𝐸, 𝐸) type, we label the
end-points of the first edge x1 and x2, and the end-points of the second edge x3 and x4. The
corresponding velocities are in both cases labeled u1, u2, u3, and u4. Now we’ll set up two
vectors x2 − x1 and x3 − x1, and take the cross product of these two to obtain a plane normal

�̂� = ((x2 − x1) × (x3 − x1) . (91)

The point x1 must lie in the plane, so the distance, 𝑑 , to the origin is given by

𝑑 = �̂� · x1. (92)

In order for the last point to lie in the plane, then its distance to the plane must be zero, that is,

�̂� · x4 − 𝑑 = 0 . (93)

Substitution leads to
((x2 − x1) × (x3 − x1)) · (x4 − x1) = 0. (94)
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Whenever this equation is fulfilled, the four points will lie in the same plane. The last thing to
consider is the motion of the points whose positions change with time, such that

((x2(𝑡) − x1(𝑡)) × (x3(𝑡) − x1(𝑡))) · (x4(𝑡) − x1(𝑡)) = 0 . (95)

Here, the objective is to determine the smallest non-negative value 𝑡 < ℎ that makes the above
equation true. From the linear motion assumption, the trajectory of each point may be written
as

x1(𝑡) = x1 + u1𝑡, (96a)
x2(𝑡) = x2 + u2𝑡, (96b)
x3(𝑡) = x3 + u3𝑡, (96c)
x4(𝑡) = x4 + u4𝑡 , (96d)

and by substitution we obtain

(((x2 − x1) + (u2 − u1) 𝑡) × ((x3 − x1) + (u3 − u1) 𝑡)) · ((x4 − x1) + (u4 − u1) 𝑡) = 0 . (97)

This is a cubic polynomial with an analytical solution. Once the three roots are found, the
positions of the vertices can also be found at the specific values of 𝑡 . Note that a rounding
error may hide a collision at the boundary between two time-steps, and a test at the end of the
time-step 𝑡 = ℎ should therefore by performed [Bridson et al. 2002].
Having found the earliest point in time where the four points are co-planar, we will finally

compute the candidate for the contact point p = x4 + u4𝑡 , if this point is inside the triangle face
then a contact point is reported with position p, normal n = (x2(𝑡) − x1(𝑡)) × (x3(𝑡) − x1(𝑡))
and penetration depth of 𝜙 = 0. In most simulation approaches the state will be reset to the
earliest point in time where a collision is found hence the penetration depth will always be
zero.

2.2.3 Continuous Collision Detection of Edge-Edge Pair. As in the (𝑉 , 𝐹 ) case, the (𝐸, 𝐸) case
requires finding the roots of a polynomial equation, and then examining the geometries in
ascending temporal order. For simplicity, let x1, x2, x3, and x4 denote the edge geometry
positions at the instant in time corresponding to a root. First, we test whether the edges are
parallel. This is the case when

(x2 − x1) × (x4 − x3) = 0 . (98)

In practice, an equality test will not work, so we use a threshold test instead. If the test succeeds,
then a dimension reduction technique can be used by projecting the vertices of one edge onto
the line running through the edge. However, one could also simply drop this case, since if
a touching contact exists, it could just as well be represented by two (𝑉 , 𝐹 ) type contacts.
Therefore, we will only consider the case where the two edges are touching at exactly one
point.
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Fig. 15. Left: a 2D example showing the SDF of a circle. Locations with positive distances are drawn
in light grey, whereas negative distances are drawn in light blue; the zero-level isosurface is draw
in black. Right: the same SDF stored on a 4 × 4 grid. The signed distance 𝑠 (x) and gradient ∇𝑠 (x)
may be computed from adjacent grid cells (i.e., using bilinear interpolation). The grid resolution can
be increased to improve the approximated shape and recover finer scale details, but at the cost of
increased complexity.

Parameterization of the two edges with the 𝑎 and 𝑏 parameters, yields

x1 + 𝑎 (x2 − x1) , (99a)
x3 + 𝑏 (x4 − x3) . (99b)

The touching point between the two lines must also be the closest point, and the closest point
is characterized by the minimum distance, so we seek the values of 𝑎 and 𝑏 that minimizes√︃

((x1 + 𝑎 (x2 − x1)) − (x3 + 𝑏 (x4 − x3)))2 . (100)

Taking the derivative with respect to 𝑎 and 𝑏 yields the so-called normal equations:[
(x2 − x1) · (x2 − x1) − (x2 − x1) · (x4 − x3)
− (x2 − x1) · (x4 − x3) (x4 − x3) · (x4 − x3)

] [
𝑎

𝑏

]
=

[
(x2 − x1) · (x3 − x1)
− (x4 − x3) · (x3 − x1)

]
. (101)

Solving for 𝑎 and 𝑏 computes the closest points between the two lines running through the
two edges. If 𝑎 and 𝑏 both are both in the range [0, 1], then a contact point can be reported at
location p = (x1 − x3) + 𝑎 (x2 − x1) − 𝑏 (x4 − x3). The normal will be given by the edge cross
products similar to Section 2.1.3. Except here we are using CCD so the penetration depth is
trivially zero.

2.3 Signed Distance Fields
Signed distance fields (SDFs) represent the shape of an object by an implicit function 𝑠 (x) :
R3 → R. Unlike mesh-based representations, which use explicit geometry, SDFs give the
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signed distance of some point x from the surface of an object. The sign (positive or negative)
indicates whether the point lies outside or inside of the object. Specifically, points interior to
the shape have 𝑠 (x) < 0, whereas exterior points have 𝑠 (x) > 0, and points on the surface
satisfy 𝑠 (x) = 0. For example, the SDF of a circle is shown on the left side of Figure 15, and
different colors are used to draw regions with positive and negative distances and the zero-level
isosurface.
In this section, we present some details about performing collision detection and generating

contacts using SDFs. Specifically, we show how polygonal meshes can be tested for intersection
using SDFs. This offers an alternative to the mesh-mesh based collision detection outlined in
Section 2.2, since it is straightforward to generate an SDF from a polygon mesh that can then
be used for efficient collision detection. However, we do not cover how to generate SDFs, and
instead refer the reader to related work on this topic [Jones et al. 2006].
In addition to computing a scalar field of signed distances, is it also common to compute

its gradient, ∇𝑠 (x) ∈ R3. Observe that the gradient function returns a 3D vector that gives
direction of the closest point on the surface from x. A desirable property of the gradient
function is that the returned vector is unit length, such that

∥∇𝑠 (x)∥ = 1 .

Therefore, ∇𝑠 (x) in fact gives the vector field of inward facing unit normal vectors. However,
this property of the field may not always be true, for instance if the closet point is not unique
(e.g., the center of a sphere), but in practice the gradient function can be constructed so as to
preserve this property.

2.3.1 SDF-Point Intersection. The canonical intersection test using an SDF is with a point. The
first step is to determine if 𝑠 (x) ≤ 0 is true, which means that either x is an interior point or
touching the surface. If true, the gap function 𝜙 is simply the signed distance provided by the
field function:

𝜙 = 𝑠 (x) (102)

Next, let us consider how to compute the contact normal. Generally speaking, the normal is
given by the forcing direction that will most quickly move x outside the field. This is in fact
the gradient evaluated at x, and so the contact normal may be computed as:

�̂� = −∇𝑠 (x)𝑇 (103)

Note again that special care should be taken to orient the normal based on the convention
used by the collision system (e.g., from the first body toward the second body).
Finally, there are two obvious choices for computing the contact position. One option is to

situate the contact point p at the surface of the SDF, which is computed by projecting x along
the gradient:

p = x − ∇𝑠 (x)𝑇𝑠 (x) (104)
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Input: mesh 𝐹,𝑉 , SDF 𝑠 , gradient field ∇𝑠
Result: List of contacts C

1 ∀x ∈ 𝑉
2 compute xlocal by transforming x (Equation 106)
3 if 𝑠 (xlocal) < 0 then
4 𝜙 = 𝑠 (xlocal)
5 �̂� = ∇𝑠 (xlocal)𝑇
6 p = x
7 transform �̂� and p to world coordinates
8 C← C ∪ {�̂�, p, 𝜙}
9 end

Algorithm 1: SDF-Mesh contact generation

Conversely, the query point may be used, such that
p = x . (105)

2.3.2 SDF-Mesh Intersection. Generating a contact for the SDF and point intersection provides
a useful building block for collision with more complex geometries, such as polygonal meshes.
Collision detection between meshes can be computationally costly, as we saw in Section 2.2.
However, a common use case of SDFs is accelerating mesh-mesh collision detection by
computing a signed distance field for each mesh and then performing approximate intersection
tests using the SDF of one object versus the mesh of the other. Luckily, there are robust methods
for building an SDF from arbitrary polygonal soups [Xu and Barbič 2014].
In Section 2.3.1, we saw that it is straightforward to generate contacts for the case of a

point intersecting an SDF. This naturally leads to an intersection test with a polygonal mesh,
whereby each vertex x ∈ 𝑉 is tested. Let us assume that we want to test a vertex from the
mesh of body B with the signed distance field of body A. The first step is to transform vertex v
into the local coordinate system of body A, since it is often more efficient to transform the
mesh vertices into the field coordinate frame, rather than the other way around. A local vertex
position is computed, such that

xlocal = R−1
A (RB (x + cB) − cA) , (106)

where cA ∈ R3, RA ∈ 𝑆𝑂 (3) and cB ∈ R3, RB ∈ 𝑆𝑂 (3) are the positions and rotation matrices
of bodies A and B respectively. Then, if 𝑠 (xlocal) < 0, an intersection exists and Equation 102-
Equation 105 may be used to generate the depth, contact normal and position. This process is
summarized in Algorithm 1.
However, testing only against the vertices of the polygonal mesh can lead to missed collisions

and other artifacts. For instance, this is likely if the mesh geometry is coarse and the SDF
surface contains thin features. These issues can be mitigated by adding more vertices to the
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mesh, although theoretically this will never fully eliminate penetration artifacts and may also
impact performance.
Recently, Macklin et al. [2020a] proposed a refinement technique to compute exact collision

between SDFs and polygonal meshes. Rather than considering each vertex of the mesh, each
face is considered. Assuming a triangle mesh, each face is defined by vertices x1, x2, x3 ∈ R3. A
point on the interior or boundary of the face can be described by its barycentric coordinates
𝑢, 𝑣,𝑤 , such that

x(𝑢, 𝑣,𝑤) = 𝑢x1 + 𝑣x2 +𝑤x3 , (107a)
subject to 𝑢, 𝑣,𝑤 ≥ 0 , (107b)

𝑢 + 𝑣 +𝑤 = 1 . (107c)
The closest point on the face can then be found by a minimization over the barycentric
coordinates:

arg min
𝑢,𝑣,𝑤

𝑠 (𝑢x1 + 𝑣x2 +𝑤x3) (108)

The minimization in Equation 108 is a non-linear optimization problem, and thus requires an
iterative approach. For instance, a projected gradient descent method. However, this requires
computing the derivative of the distance field at each candidate solution with respect to the
barycentric coordinates, which is

d =


𝜕s
𝜕𝑢
𝜕s
𝜕𝑣
𝜕s
𝜕𝑤

 =


∇𝑠 (x)x1
∇𝑠 (x)x2
∇𝑠 (x)x3

 .
At the 𝑘th iteration of the gradient descent algorithm, the candidate solution to Equation 108
is then updated by a fixed-point iteration, such that

x(𝑘+1) ← ProjBarycentric(x(𝑘)) − 𝛼d .
Here, 𝛼 is a fixed step size and ProjBarycentric projects the solution 𝑢, 𝑣,𝑤 to the manifold
defined by Equation 107b-Equation 107c. After the solver terminates, if 𝑠 (x(𝑢, 𝑣,𝑤)) < 0 then
a contact is generated.

2.3.3 Implementation Notes. In practice, an SDF is often represented by a discrete data
structure, such as a dense or sparse voxel grid. Each grid cell (𝑖, 𝑗, 𝑘) stores the signed distance,
and thus 𝑠 (x) is computed by first identifying the grid cell containing x and then performing
an interpolation using the neighboring grid cells (see the right side of Figure 15). In the case
of the gradient, ∇𝑠 (x), it may be computed on-demand using finite differences, by analytic
gradients, or precomputed and stored alongside distance values on the grid.
The grid cell size will have an effect on the quality of the collision detection, and often the

grid cell size is determined based on the smallest features of the source geometry. However,
this may result in heavy memory consumption if a uniform grid is used to store complex
surfaces. Frisken et al. [2000] proposed an adaptive SDF to address this problem, where an
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octree subdivision is used to recursively refine the grid until the interpolated field values
closely match the original surface. Similarly, Koschier et al. [2016] improved the accuracy of
SDFs for complex geometry by adaptively refining the resolution of the grid, as well as the
polynomial degree used to represent local field details.
It is trivial to extend the contact generation techniques presented in this section to analytical

shapes, such as spheres. However, in the case that the field is stored using a discrete grid, it is
important that the grid is extended by a margin around the zero-level isosurface of the source
geometry to avoid discontinuities and ensure that valid field data exists for possible query
points.
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3 NUMERICAL METHODS
In this section, we present a collection of numerical methods for solving the frictional contact
problems. These can be roughly classified into two general approaches: i) pivoting methods
and ii) iterative methods. Pivoting methods focus on determining a labeling of variables
based on the complementarity conditions. Once the labeling is known, an exact solution
to the complementarity problem may be computed if a direct solver is used to solve the
resulting subproblem. Conversely, iterative methods make incremental progress toward the
exact solution, with better approximations being obtained at each iteration. Additionally, there
are hybrid approaches that combine these schemes.
The fundamental goal of applying these numerical methods is to solve for the constraint

impulses 𝜆, while also ensuring that the feasibility and complementarity conditions of the
various contact models are met. However, some of the frictional contact models from Section 1
require computing other parameters that are important for producing the correct behavior,
such as the slack 𝛽 parameter used by the polyhedral LCP. Therefore, we depart from earlier
convention and now use x to denote the vector of unknowns that is computed by each numerical
method, rather than just the constraint impulses 𝝀.

3.1 Pivoting Methods
Pivoting methods exploit the combinatorial nature of complementarity problems to find a
labeling of the variables based on the complementarity and feasibility conditions imposed by
the model. With this labeling, which is sometimes referred to as the index set, it is possible to
identify constraint variables as being free or tight, and the latter case is further decomposed
into tight lower and tight upper variables. This labeling permits a partitioning of linear system
based on the index set. For instance,


AF,F AF,L AF,U
AL,F AL,L AL,U
AU,F AU,L AU,U



xF
xL
xU

 +

bF
bL
bU

 =


vF
vL
vU

 , (109)

where F is the set of free variables, L is the set of tight lower variables, and U is the set of tight
upper variables. Each sub-block of A in Equation 109 thus corresponds to selecting rows and
columns of the lead matrix that correspond to the rows and columns of each set. For instance,
AF,L contains row indices from F and column indices from L. The rows of vectors b, x, and v
may be similarly partitioned according to the index set labels.
For contact problems, the index set of each variable is determined by inspection of each 𝑣𝑖

and 𝑥𝑖 . Variables in 𝑖 ∈ F are those for which the value of x𝑖 is not restricted by the feasibility
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condition of the constraint (e.g., the lower and upper bounds). Whereas tight variables 𝑖 ∈ L∪U
have a value which is determined by the feasibility conditions.1
To better understand how this partitioning works, let us consider the BLCP formulation,

where x = 𝝀 are the constraint impulses. From Equation 41, we can define the index sets based
on the feasibility and complementarity conditions of the BLCP based on three cases:

{∀𝑖 ∈ F : 𝜆lo𝑖 < 𝜆𝑖 < 𝜆
hi
𝑖 and 𝑣𝑖 = 0} , (110a)

{∀𝑖 ∈ L : 𝜆𝑖 = 𝜆lo𝑖 and 𝑣𝑖 > 0} , (110b)

{∀𝑖 ∈ U : 𝜆𝑖 = 𝜆hi𝑖 and 𝑣𝑖 < 0} . (110c)

For non-interpenetration constraints, which are only lower bounded, this labeling implies that

𝑖 ∈ F ⇒ 𝜆𝑖 > 0 and 𝑣𝑖 = 0 , (111a)
𝑖 ∈ L ⇒ 𝜆𝑖 = 0 and 𝑣𝑖 > 0 . (111b)

Whereas for frictional constraints with box limits, the free and tight labels imply that

{𝑖 ∈ F ⇒ −𝜇𝜆�̂� < 𝜆𝑖 < 𝜇𝜆�̂� and 𝑣𝑖 = 0} , (112a)
{𝑖 ∈ L ⇒ 𝜆𝑖 = −𝜇𝜆�̂� and 𝑣𝑖 > 0} , (112b)
{𝑖 ∈ U ⇒ 𝜆𝑖 = +𝜇𝜆�̂� and 𝑣𝑖 < 0} , (112c)

where 𝜆�̂� is the non-interpenetration impulse corresponding to frictional impulse 𝜆𝑖 .
Extending the conditions in Equations 110a-110c to the general case, we observe that the

residual velocity is zero for all variables in the free set. That is,

∀𝑖 ∈ F : 𝑣𝑖 = 0 .

Furthermore, we note that the value of tight variables is determined by a boundary condition
(i.e., they are known). This allows us to simplify Equation 109 to a version that involves only
the unknown free variables:

AF,FxF = −bF − AF,LxloL − AF,UxhiU (113)

Hence, computing xF simply requires solving an unconstrained linear system. The objective
of pivoting methods is therefore to correctly determine the index set of constraint variables
that solves the complementarity problem. Essentially, a solution is found by "guessing" an
index set for the constraint variables and then confirming that a candidate solution is correct
with respect to the complementarity and feasibility conditions. We note that a brute force
approach for determining the correct index set would be inefficient since it requires guessing
2𝑚 possibilities for an𝑚 variables system. Rather, most pivoting methods use a systematic
1The variables our contact models are mostly limited by inequality conditions. So, “tight” describes a variable
that is directly against the hyperplane defining an inequality constraint, whereas “free” variables are not and
they have some room on all sides.
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approach to change the index set of individual variables. In the next sections, we will explore
some popular algorithms that use various strategies to pivot variables between the free and
tight sets to find a solution.

3.1.1 Incremental Pivoting. Lemke’s algorithm [Lloyd 2005] is a well-known pivoting method
that incrementally pivots variables between the tight and free set in order to find a basis that
solves the LCP. The simplex method proposed by Cottle and Dantzig [Cottle 1968] has likewise
been used to find the index set. Baraff [Baraff 1994] used an incremental pivoting approach
based on Dantzig’s algorithm to solve for contact forces. Their method incrementally computes
a solution by making change to the index sets while keeping the complementarity constraints
as invariants. We consider the case of solving a traditional LCP with the index sets following
Equation 111.
The algorithm begins with sets F and L empty; set U is ignored. It is presumed that, at

each pivoting step, the complementarity conditions of all previously processed variables are
maintained. The algorithm proceeds at each step by selecting the candidate variable with index
𝑗 from the unprocessed set P that minimizes 𝑣 𝑗 ∈ R, since this corresponds to an index with
the most violated complementarity condition. At the 𝑘 th iteration, the following partitioning
of the system is used: 

v𝑘F
v𝑘L
𝑣𝑘𝑗

 =


AF,F AF,L AF, 𝑗
A𝑇F,L AL,L AL, 𝑗

A𝑇F, 𝑗 A𝑇L, 𝑗 A 𝑗, 𝑗



x𝑘F
x𝑘L
0

 +

bF
bL
𝑏 𝑗

 .
Initially, it is assumed that 𝑥 𝑗 = 0. Knowing that x𝑘 of the processed indices respects the
complementarity conditions, we focus on computing an update of the variables based on a
change of the unprocessed variable Δ𝑥 𝑗 , such that

ΔvF
ΔvL
Δ𝑣 𝑗

 =


AF,F AF,L AF, 𝑗
A𝑇F,L AL,L AL, 𝑗

A𝑇F, 𝑗 A𝑇L, 𝑗 A 𝑗, 𝑗



ΔxF
ΔxL
Δ𝑥 𝑗

 .
The method takes advantage of the invariants vF = 0 and xL = 0, which logically leads to the
assumption that ΔvF = 0 and ΔxL = 0. For a unit increase Δ𝑥 𝑗 = 1, we can write the linear
system as: 

0
ΔvL
Δ𝑣 𝑗

 =


AF,F AF,L AF, 𝑗
A𝑇F,L AL,L AL, 𝑗

A𝑇F, 𝑗 A𝑇L, 𝑗 A 𝑗, 𝑗



ΔxF
0
1

 . (114)

The first block row of Equation 114 allows us to compute changes in the free variables by
solving

AF,FΔxF = −AF, 𝑗 .

The change in residual velocity of tight variables vL is then given by
ΔvL = A𝑇F,LΔxF + AL, 𝑗 ,
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and likewise
Δ𝑣 𝑗 = A𝑇F, 𝑗ΔxF + A 𝑗, 𝑗 .

However, we note that our assumptions are valid only if the index set of variables does not
change. For some 𝑖 ∈ F where Δ𝑥𝑖 < 0, it is possible that 𝑥𝑖 will be driven to zero, in which
case 𝑖 should be pivoted from F → L. Similarly, for some 𝑖 ∈ L where Δ𝑣𝑖 < 0, it is possible
the residual velocity 𝑣𝑖 is driven to zero, in which case the variable 𝑖 should be pivoted from
L→ F.
Essentially, the idea here is to increase 𝑥𝑘+1𝑗 as much as possible without breaking the

complementarity or feasibility conditions. At each iteration, it is therefore necessary to compute
a maximum step size 𝛼 up to the point that the index set of one of the variables changes (pivots).
Starting with the unprocessed variable 𝑗 , the largest step we can take without forcing 𝑥𝑘+1𝑗

negative is

𝛼 𝑗 =

(
−𝑣𝑘𝑗
Δ𝑣 𝑗

)
. (115)

For each 𝑖 ∈ F, if Δ𝑥𝑖 < 0, the minimum step size that can be taken without forcing 𝑥𝑘+1𝑖

negative is

𝛼F = min
𝑖∈F∧Δ𝑥𝑖<0

(
−𝑥𝑘𝑖
Δ𝑥𝑖

)
. (116)

Finally, for each 𝑖 ∈ L, if Δ𝑣𝑖 < 0, the minimum step size that can be taken without forcing
𝑣𝑘+1𝑖 negative is

𝛼L = min
𝑖∈L∧Δ𝑣𝑖<0

(
−𝑣𝑘𝑖
Δ𝑣𝑖

)
. (117)

The step size is computed as 𝛼 = min
(
𝛼F, 𝛼L, 𝛼 𝑗

)
. The constraint impulses are then increased

by 𝛼Δx = 𝛼
[
ΔxF 0 1

]𝑇 , which causes 𝑣 to change by 𝛼Δ𝑣 = A(𝛼Δx). If the blocking
constraint index is not 𝑗 , this causes a change in the index set and the variable is pivoted to
maintain the complementarity conditions. The process of updating the constraint variables and
increasing Δ𝑥 𝑗 continues until 𝑣 𝑗 is driven to zero. Pseudo-code for the incremental pivoting
algorithm is provided in Algorithm 2.

3.1.2 Principal Pivoting Methods. Unlike Baraff’s incremental pivoting approach, other pivot-
ing algorithms initialize variables with a specific label. The Bard-type method proposed by
Murty [Murty 1974; Murty and Yu 1988] is one such algorithm, and it uses principal pivots at
each iteration to change the index set whenever a variable at index 𝑖 violates the feasibility or
complementarity conditions.
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Data: A: The LCP coefficient matrix, b: The right hand side vector.
Result: x: The LCP solution, F,L: The index sets of the free and tight variables.

1 x = 0
2 v = b
3 initialize F = L = ∅
4 while ∃ 𝑗 such that 𝑣 𝑗 < 0 do
5 repeat
6 solve AF,FΔxF = −AF, 𝑗

7 ΔvL = A𝑇F,LΔxF + AL, 𝑗

8 Δ𝑣 𝑗 = A𝑇F, 𝑗ΔxF + A 𝑗, 𝑗

9 compute 𝛼 according to Equation 115-Equation 117
10 store blocking constraint index 𝑙
11 xF ← xF + 𝛼ΔxF
12 vL ← vL + 𝛼ΔvL
13 𝜆 𝑗 = 𝛼

14 if 𝑙 ∈ F then
15 F← F − {𝑙}
16 L← L ∪ {𝑙}
17 else if 𝑙 ∈ L then
18 L← L − {𝑙}
19 F← F ∪ {𝑙}
20 else
21 F← F ∪ {𝑙}
22 until 𝑙 = 𝑗 ;
23 end

Algorithm 2: Incremental pivoting for an LCP.

The algorithm begins with an initial “guess” for the index sets, and at each step the principal
sub-problem in Equation 113 is solved in order to determine xF, and thus vL and vU too. If
a variable violates its feasibility or complimentarity conditions, then the algorithm stops
since the current index set is a solution to the LCP. Otherwise, Murty’s algorithm chooses an
infeasible variable with the smallest index 𝑖 and pivots it into the complementary set. That is,
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variables are pivoted according to the rules:
F← F − {𝑖} L = L ∪ {𝑖}, if 𝑖 ∈ F and𝑥𝑖 ≤ 𝑥 lo𝑖
F← F − {𝑖} U = U ∪ {𝑖}, if 𝑖 ∈ F and𝑥𝑖 ≥ 𝑥hi𝑖
U = U − {𝑖} F← F ∪ {𝑖}, if 𝑖 ∈ U and 𝑣𝑖 ≥ 0
L = L − {𝑖} F← F ∪ {𝑖}, if 𝑖 ∈ L and 𝑣𝑖 ≤ 0

. (118)

It can be proven that if the lead matrix A ∈ R𝑛×𝑛 is a P-matrix then the system will find
a solution in 𝑛 pivots. However, for degenerate systems, it can be shown that the pivoting
algorithm may lead to cycling, which occurs whenever the same index set is encountered
twice by the pivoting algorithm. Robust implementations of principal pivoting algorithms
often require some way to detect and break cycles.

3.1.3 Block Principal Pivoting. Both the incremental pivoting and the Bard-type algorithm
proceed at each step by updates that are based on a single variable. While single pivoting
schemes have good convergence guarantees, computation times are protracted due to only
changing a single variable at each step. However, in practice, it is often possible to pivot more
than one variable to achieve faster convergence.
Judice and Pires [Júdice and Pires 1994] proposed a block version of Murty’s algorithm

whereby all variables in violation of the feasibility or complementarity conditions are pivoted
together at each step, rather than just the least indexed variable. Therefore, at each algorithm
step, a pass over all variables check if any violate the condition, and if so the pivoting
rules in Equation 118 are applied to all variables in violation simultaneously. The algorithm
terminates with success if the index sets between two consecutive pivoting steps do not change.
Pseudocode for the block principal pivoting algorithm is provided in Algorithm 3.
In practice, the BPP algorithm can converge to the correct index set after only a small number

of iterations. However, cycling in the index set can occur even when A is positive definite. In
such cases, one strategy proposed by Judice and Pires [Júdice and Pires 1994] is to temporarily
revert to a Murty single pivoting scheme by choosing an infeasible variable with the least
index. However, in general, robust implementations of pivoting algorithm require some sort of
cycle breaking strategy.

3.1.4 Implementation Notes. Observe that both the incremental pivoting and the block princi-
pal pivoting methods require a solution involving the linear system AF,FxF. We assume that
A is symmetric positive definite (PD), and therefore A−1

FF exists. However, Baraff reported
that even when A is positive semi-definite (PSD), which is often the case in practice due to
redundant contact constraints, then A−1

F,F could still be computed. Applying the constraint
stabilization techniques presented in Section 1.9 can improve the conditioning of AF,F and
alleviate problems related to degenerate matrices.
In practice, forming and solving the linear system uses a Cholesky decomposition. Baraff

noted that for complex systems, an incremental factorization is preferred for efficiency, although
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Data: 𝑁 : The total number of pivoting steps to perform, A: The coefficient matrix, b:
The right hand side vector.

Result: x: The BLCP solution for all 𝑛 variables, F,L,U: The index sets of the free and
tight variables.

1 initialize F = {1, . . . , 𝑛} , L = ∅ ,U = ∅
2 𝑘 = 1
3 while (𝑘 ≤ 𝑁 and F, L,U changed) do
4 ∀ 𝑖 ∈ L : 𝑥𝑖 ← 𝑥 lo𝑖
5 ∀ 𝑖 ∈ U : 𝑥𝑖 ← 𝑥hi𝑖
6 solve AF,FxF = −bF − AF,LxloL − AF,UxhiU
7 v = Ax + b
8 update F, L,U according to Equation 118
9 𝑘 = 𝑘 + 1

10 end

Algorithm 3: Block principal pivoting (BPP) for BLCPs.

an implementation is potentially non-trivial. Enzenhoefer et al. [2019] proposed an efficient
version of Judice’s block pivoting algorithm that re-uses an initial factorization of AF,FxF
and downdates the factorization based on indices in L ∪ U. For complex simulations, they
observed a 1.5 to 3 times reduction in the computation time of the BPP algorithm when using
a downdated factorization, with the caveat that the approach is more efficient only when a
nominal percentage of variables is pivoted. Furthermore, parallelization of pivoting methods is
challenging, especially if a factorization is used to solve the principal sub-problem. However,
there is some work that has addressed this problem. For instance, Peiret et al. [2019] introduced
a parallelization technique for pivoting solvers using a domain decomposition technique, and
their method is capable of producing exact solutions for the contact BLCP.

3.2 Fixed-point methods
In this section we will focus on a popular class of methods for solving contact problems that
are commonly referred to as fixed-point methods. Specifically, we focus on the projected
Gauss-Seidel (PGS) algorithm and its variants. Furthermore, this section focuses entirely on
contact models that originate from the complementary problem formulations introduced in
Sections 1.6-1.8. First, we introduce the idea of splitting up the contact problem in order to get
a group of more manageable problems, which we can then solve iteratively. This naturally
leads to a frictional contact formulation that can be solved using the PGS method. Then, in
Section 3.2.4, the idea of splitting in a recursive fashion is used to derive the blocked Gauss-
Seidel method. The staggering method is presented in Section 3.2.5. Blocking and staggering
are general concepts that can be applied in other problem domains, as they serve as a general
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scheme for combining different numerical solvers into one overall solver. The PGS type of
methods are interesting building blocks for many other types of numerical methods such as
sub-space minimization [Silcowitz et al. 2010b] and non-smooth non-linear conjugate gradient
(NNCG) method [Silcowitz et al. 2010a]. We cover these higher-level solvers once we have
created a strong foundation for the PGS type of methods.

3.2.1 Splitting Methods. We begin with the general concept of splitting methods. This class of
methods is well known in numerical optimization, and includes methods such as Gauss-Seidel,
Jacobi and successive over-relaxation (SOR). Splitting methods are iterative methods, which
unlike the pivoting methods described in Section 3.1, are practically incapable of computing
the exact solution to the LCP. Iterative methods approximate the solution, but do so in a much
more efficient way, both computationally and storage wise. The traditional form of the LCP is

Ax + b ≥ 0 , (119a)
x ≥ 0 , (119b)

x𝑇 (Ax + b) = 0 , (119c)

which corresponds to the LCP introduced using the polyhedral cone in Section 1.6. Splitting
methods start with the decomposition of the lead matrix such that A = M − N. Note that
M here is not the mass matrix, and we leave M and N unspecified for now. Using the new
definition of A, Equation 119 becomes

Mx − Nx + b ≥ 0 , (120a)
x ≥ 0 , (120b)

x𝑇 (Mx − Nx + b) = 0 . (120c)

Let us next assume that we will use an iterative method where x𝑘 → x𝑘+1 for 𝑘 → ∞. This
assumes there is an accumulation or limiting point for the system. We can then rewrite Equa-
tion 119 using the decomposition and in terms of the current and next iterate:

Mx𝑘+1 − Nx𝑘 + b ≥ 0 , (121a)

x𝑘+1 ≥ 0 , (121b)(
x𝑘+1

)𝑇 (
Mx𝑘+1 − Nx𝑘 + b

)
= 0 . (121c)

In the 𝑘 th iteration of the iterative method, we let c𝑘 = b − Nx𝑘 , and the LCP Equation 121
becomes

Mx𝑘+1 + c𝑘 ≥ 0 , (122a)

x𝑘+1 ≥ 0 , (122b)

(x𝑘+1)𝑇 (Mx𝑘+1 + c𝑘) = 0 . (122c)
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This is a fixed-point formulation and, for a suitable choice of M and N, we hope that the
complementarity sub-problem Equation 122 might be easier to solve than the original prob-
lem Equation 119. Imagine, for instance, letting M be the diagonal of A. This choice decouples
all variables and we have a sub-problem of 𝑛 independent 1D LCPs. The general splitting
method can be summarized as follows:

Step 1 Initialization: set 𝑘 = 0 and choose an arbitrary non-negative x0 ≥ 0.
Step 2 Given x𝑘 ≥ 0 solve the LCP Equation 122.
Step 3 If x𝑘+1 satisfies the termination criteria then stop, otherwise set 𝑘 ← 𝑘 + 1 and go to
Step 2.

The splitting is often chosen such that M is a Q-matrix, meaning that M belongs to the
class of matrices where the corresponding LCP has a solution. Clearly, if x𝑘+1 is a solution
to Equation 121 and we have x𝑘+1 = x𝑘 , then by substitution into the sub-problem given
by Equation 121 we see that x𝑘+1 is a solution to the original problem Equation 119.
We use the minimum map reformulation to realize the LCP sub-problem in Equation 121c,

such that
min(x𝑘+1,Mx𝑘+1 + b − Nx𝑘) = 0 , (123)

and subtracting x𝑘+1 and multiply by minus one, we get

max(0,−Mx𝑘+1 − b + Nx𝑘 + x𝑘+1) = x𝑘+1 . (124)

Here, we re-discover a fixed-point formulation. Now, let us perform a case-by-case analysis of
the 𝑖th component. If we assume(

x𝑘+1 −Mx𝑘+1 − b + Nx𝑘
)
𝑖
< 0 , (125)

then we must have x𝑘+1𝑖 = 0. Otherwise, our assumption is false and we must have(
x𝑘+1 −Mx𝑘+1 − b + Nx𝑘

)
𝑖
= x𝑘+1𝑖 . (126)

That is,
(Mx𝑘+1)𝑖 = −c𝑘𝑖 . (127)

Here we have defined c𝑘 = b − Nx𝑘 . For a suitable choice of M we can rewrite (Mx𝑘+1)𝑖 = −c𝑘𝑖
as

x𝑘+1𝑖 = −(M−1c𝑘)𝑖 . (128)
Not all splittings will make this rewrite possible. A trivial example that allows this is to let M
to be the diagonal of A. Other common choices that allow this rewrite are listed in Table 2. A
simple rearrangement of terms gives an expression to update x at each iterate, such that(

M−1
(
Nx𝑘 − b

))
𝑖
= x𝑘+1𝑖 , (129)
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Data: 𝑁 : Number of sweeps to perform, x: Initial iterate,M: First part of the matrix
splitting, N: Second part of the matrix splitting, b: The LCP right hand side vector.

Result: x: The numerical solution of the LCP.
1 for 𝑘 ← 1 to 𝑁 do
2 z𝑘 ← M−1 (

Nx𝑘 + b
)
;

3 x𝑘+1 ← max
(
0, z𝑘

)
;

4 end

Algorithm 4: Splitting method. Generic projected method given matrix splitting A =

M −N. Notice that the key to an efficient method is to find an in-expensive to compute the
effect of the matrix multiplication byM−1.

Table 2. Splittings for the three methods: Jacobi, projected Gauss-Seidel (PGS) and projected successive
over-relaxation (PSOR). The matrix D is the diagonal part of the original A matrix. The matrix U is the
strict upper part of the original A matrix. The matrix L is the strict lower part of the original A matrix.
The relaxation parameter should be chosen such that 0 < 𝜔 < 2.

Method M −N
Jacobi D L + U
PGS L + D U
PSOR D + 𝜔L (1 − 𝜔) D − 𝜔U

and combining it all we have derived the closed form solution for the complementary sub-
problem:

max
(
0,

(
M−1

(
Nx𝑘 − b

)))
= x𝑘+1 . (130)

Iterative schemes like these are often termed projection methods. The reason for this is that if
we introduce the vector z𝑘 = M−1 (

Nx𝑘 − b
)
then

x𝑘+1 = max
(
0, z𝑘

)
. (131)

That is, the 𝑘 + 1 iterate is obtained by projecting the vector z𝑘 to be positive. The pseudo-code
for splitting methods with projection is given in Algorithm 4 and this framework applies to a
variety of algorithms which are distinguished according to their splitting. Table 2 lists some of
the popular splittings used by specific variants of the algorithm.
It should be noted that A must at least have nonzero diagonal values for these splittings to

work. As far as we know there exist no convergence proofs in the general case of A being
arbitrary. However, given appropriate assumptions on A such as being a contraction mapping
or symmetric, global convergence can be proven [Cottle et al. 1992; Murty and Yu 1988]. The
projected Successive Over Relaxation (PSOR) method is interesting as it has the free parameter
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𝜔 that helps control it convergence rate. Further, we see that the projected Gauss–Seidel (PGS)
method pops out as the special case for 𝜔 = 1. In practice one would tune the value of 𝜔 .
To see how to solve Equation 131 in an actual implementation, let us look at the specific

case of PSOR splitting as given in the Table 2. The principle is a for-loop which sweeps over
the vector components and updates the x vector in place. When we use the PSOR splitting, it
is useful to note that

M − N = D + 𝜔L − ((1 − 𝜔)D − 𝜔U) , (132)
= 𝜔 (L + D + U) , (133)
= 𝜔A . (134)

This is equivalent to a relaxation of the LCP by replacing Ax + b ≥ 0 with 𝜔 (Ax + b) ≥ 0.
For now we assume 𝜔 is a positive real number. The relaxed LCP is then,

𝜔 (Ax + b) ≥ 0 , (135a)
x ≥ 0 , (135b)

x𝑇𝜔 (Ax + b) = 0 . (135c)
The factor 𝜔 can be interpreted as a scaling of the term Ax + b. We now rewind the derivation
of the projection method to Equation 127. For the specific case of PSOR this will result in(

(𝜔 L + D) x𝑘+1
)
𝑖
=

(
((1 − 𝜔) D − 𝜔U) x𝑘 − 𝜔b

)
𝑖

(136)

Next we replace matrix multiplications with index notation

𝜔

𝑛∑︁
𝑗=1

L𝑖 𝑗x𝑘+1𝑗 +
𝑛∑︁
𝑗=1

D𝑖 𝑗x𝑘+1𝑗 = (1 − 𝜔)
𝑛∑︁
𝑗=1

D𝑖 𝑗 x𝑘𝑗 − 𝜔
𝑛∑︁
𝑗=1

U𝑖 𝑗 x𝑘𝑗 − 𝜔b𝑖 . (137)

We can use the fill pattern of the matrices L, D, and U to optimize the summation operations,

𝜔

𝑖−1∑︁
𝑗=1

L𝑖 𝑗x𝑘+1𝑗 + D𝑖𝑖x𝑘+1𝑖 = (1 − 𝜔) D𝑖𝑖 x𝑘𝑖 − 𝜔
𝑛∑︁

𝑗=𝑖+1
U𝑖 𝑗 x𝑘𝑗 − 𝜔b𝑖 . (138)

Then we isolate x𝑘+1𝑖 on the left hand side of the equation

x𝑘+1𝑖 =
−𝜔b𝑖 − 𝜔

∑𝑖−1
𝑗=1 L𝑖 𝑗x

𝑘+1
𝑗 − 𝜔D𝑖𝑖 x𝑘𝑖 − 𝜔

∑𝑛
𝑗=𝑖+1 U𝑖 𝑗 x

𝑘
𝑗 + D𝑖𝑖 x𝑘𝑖

D𝑖𝑖
. (139)

Reducing this slightly, we get

x𝑘+1𝑖 = x𝑘𝑖 − 𝜔
b𝑖 +

∑𝑖−1
𝑗=1 L𝑖 𝑗x

𝑘+1
𝑗 + D𝑖𝑖 x𝑘𝑖 +

∑𝑛
𝑗=𝑖+1 U𝑖 𝑗 x

𝑘
𝑗

D𝑖𝑖
. (140)

We assume a sweep over the indices 𝑖th in increasing order. Due to this particular sweep order
we will have solved for all x𝑘+1𝑗 with 𝑗 < 𝑖 when we start updating the 𝑖th index. Hence there
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Data: 𝑁 : The total number of sweeps to perform, 𝜔 : SOR relaxation parameter value, x:
Initial iterative, A: The LCP coefficient matrix, b: The right hand side vector.

Result: x: The LCP numerical solution.
1 for 𝑘 ← 1 to 𝑁 do
2 foreach 𝑖 do
3 r𝑖 ← A𝑖∗x + b𝑖 ;
4 x𝑖 ← max

(
0, x𝑖 − 𝜔 r𝑖

A𝑖𝑖

)
;

5 end
6 end

Algorithm 5: Projected successive over-relaxation (PSOR). Observe that this method
essential builds on sparse blocked matrix products. This can be exploited in actual
implementations.

are no unknowns on the right hand side of Equation 140. We can exploit this knowledge to
allow in-place updating of the x-iterate,

x𝑖 ← x𝑖 − 𝜔
b𝑖 +

∑𝑖−1
𝑗=1 L𝑖 𝑗x 𝑗 + D𝑖𝑖 x𝑖 +

∑𝑛
𝑗=𝑖+1 U𝑖 𝑗 x 𝑗

D𝑖𝑖
. (141)

Noting that

𝑖−1∑︁
𝑗=1

L𝑖 𝑗x 𝑗 + D𝑖𝑖 x𝑖 +
𝑛∑︁

𝑗=𝑖+1
U𝑖 𝑗 x 𝑗 =

𝑛∑︁
𝑗=1

L𝑖 𝑗x 𝑗 +
𝑛∑︁
𝑗=1

D𝑖𝑖 x 𝑗 +
𝑛∑︁
𝑗=1

U𝑖 𝑗 x 𝑗 (142)

=

𝑛∑︁
𝑗=1

A𝑖 𝑗x 𝑗 , (143)

and defining r = b + Ax our derivation is reduced to

x𝑖 ← x𝑖 − 𝜔
r𝑖
D𝑖𝑖

. (144)

All that remains is to substitute back into the re-written minimal map reformulation Equa-
tion 131. We obtain the final update scheme,

x𝑖 ← max
(
0 , x𝑖 − 𝜔

r𝑖
D𝑖𝑖

)
for 𝑖 = 1 to 𝑛 . (145)

Notice that the sweep order of the 𝑖th index is important. A pseudo code version of this practical
approach can be found in Algorithm 5. Note that PGS is a special case of where 𝜔 = 1.
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On a side note, observe that if the reverse sweep order is wanted such that 𝑖 = 𝑛 to 1, then
this is possible too. The original fixed-point formulation Equation 121 will then be

Mx𝑘 − Nx𝑘+1 + 𝜔 b ≥ 0 , (146a)

x𝑘+1 ≥ 0 , (146b)(
x𝑘+1

)𝑇
𝜔 (Mx𝑘 − Nx𝑘+1 + b) = 0 . (146c)

All steps in the derivations are similar for this version of the fixed-point problem. However,
instead of forward PSOR update rule Equation 145 we now have a backward update rule

x𝑖 ← max
(
0 , x𝑖 − 𝜔

r𝑖
D𝑖𝑖

)
for 𝑖 = 𝑛 to 1 . (147)

In some applications, it can be convenient to let a full forward sweep be followed by a full
backward sweep. This variant of the projection method is known as a symmetric projection
method. The idea of symmetry applies to both PSOR and PGS, but is pointless for Jacobi. We
note that in some applications the sweep order may cause side-effects and the symmetric
variant can potentially alleviate this order-dependency issue to some extent.
In the splitting algorithms derived so far, we have applied a simple maximum iteration count

to guard against infinite looping. For many real-time applications such a termination criteria
will be sufficient. However, for more accurate applications it could result in inaccurate results.
It is quite easy to extend the algorithm to use merit functions for both absolute and relative

convergence testing or detecting divergence. Convergence of projection methods requires that
the update rule – such as Equation 145 – is a contraction mapping. As an example, we can use
the infinity norm of x as a merit function. The infinity norm merit function is defined as

𝜃∞(x) ≡ ∥x∥∞ = arg max
𝑖
|x𝑖 | . (148)

This particular norm is very attractive, as it is easily calculated during the sweeping of the
indices, shown in Algorithm 6.
Another possibility for convergence testing is to use a measurement for the complementary

condition as a merit function:

𝜃compl.(x) ≡
��x𝑇 (Ax + b)�� . (149)

In the case of x = 0 it is important to also make sure that the constraint Ax + b ≥ 0 is not
violated.
Any of the complementary reformulations can in principle be used as a merit function,

but be careful not to choose a merit function which dominates the computational cost of the
iteration of the projection methods itself. The cost of a projection method iteration is O(𝑛𝑘),
where 𝑘 ≤ 𝑛 is the maximum number of non-zeros in any given row of A.
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Data: 𝑁 : The total number of sweeps to perform, x : Initial solution estimate, A : The
coefficient matrix, b : The right hand side vector, 𝜀relative > 0 : relative
convergence threshold.

Result: x: The LCP numerical solution.
1 𝛿 ←∞; /* Merit-value of current iterate */
2 𝛾 ←∞; /* Merit-value of previous iterate */
3 for 𝑘 ← 1 to 𝑁 do
4 𝛾 ← 𝛿 ;
5 𝛿 ← 0;
6 foreach 𝑖 do
7 x𝑖 ← update scheme;
8 𝛿 ← max(𝛿, x𝑖);
9 end

10 if 𝛿 > 𝛾 then
11 return divergence
12 end
13 if 𝛿−𝛾

𝛾
< 𝜀relative then

14 return relative convergence
15 end
16 end

Algorithm 6: Projection method testing for contraction and divergence using infinity
norm of iterate as merit function. Notice how divergence and relative convergence can be
easily tested for.

3.2.2 Extending to the BLCP. As we saw in Section 1.7 the frictional problem could be recast
from an LCP model into a boxed LCP model (BLCP). Hence, we will extend the splitting ideas
from solving an LCP model to solving a BLCP model as well. Our starting point for deriving a
splitting method for the BLCP is the minimum map reformulation From this we can write the
𝑖th component as follows

min(𝑢𝑖 − x𝑖,max(𝑙𝑖 − x𝑖,−y𝑖)) = 0 . (150)

By adding x𝑖 we get a fixed point formulation

min(𝑢𝑖,max(𝑙𝑖, x𝑖 − (Ax + b)𝑖)) = x𝑖 . (151)

What follows now, is quite similar to what we derived in the LCP case. Once again, we introduce
the splitting A = M − N and the iteration index 𝑘 . Then we define c𝑘 = b − Nx𝑘 . Using this we
have

min(𝑢𝑖,max(𝑙𝑖, (x𝑘+1 −Mx𝑘+1 − c𝑘)𝑖)) = x𝑘+1𝑖 . (152)
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When x𝑘 converges, then Equation 152 is equivalent to Equation 150. Next we perform a
case-by-case analysis. Three cases are possible,

(x𝑘+1 −Mx𝑘+1 − c𝑘)𝑖 < 𝑙𝑖 ⇒ x𝑘+1𝑖 = 𝑙𝑖 , (153a)

(x𝑘+1 −Mx𝑘+1 − c𝑘)𝑖 > 𝑢𝑖 ⇒ x𝑘+1𝑖 = 𝑢𝑖 , (153b)

𝑙𝑖 ≤ (x𝑘+1 −Mx𝑘+1 − c𝑘)𝑖 ≤ 𝑢𝑖 ⇒ x𝑘+1𝑖 = (x𝑘+1 −Mx𝑘+1 − c𝑘)𝑖 . (153c)
Case Equation 153c reduces to,

(Mx𝑘+1)𝑖 = −c𝑘𝑖 , (154)
which for a suitable choice ofM and back substitution of c𝑘 gives,

x𝑘+1𝑖 = (M−1(Nx𝑘 − b))𝑖 . (155)
Thus, our iterative splitting scheme becomes,

min(𝑢𝑖,max(𝑙𝑖, (M−1(Nx𝑘 − b))𝑖)) = x𝑘+1𝑖 . (156)

Now let x′ = M−1(Nx𝑘 − b) then we have the projection method

x𝑘+1 = min(u,max(l, x′)) , (157)
where the (𝑘 + 1)th iterate obtained by projecting the vector x′ onto the box given by l and u.
Valid splittings of A are the same as in Table 2. By comparing Equation 156 to Equation 131,
we notice the the relationship between LCP and BLCP for splitting methods.

3.2.3 Ordering of Variables. The convergence of PGS and related fixed-point algorithms
depends on the order in which variables x1...𝑛 are updated. This can easily be seen by inspecting
Equation 141, where the update of variable x𝑖 depends on the values of the previous 1 . . . (𝑖 −1)
variables and hence the order in which they are updated.
Fratarcangeli and Pellacini [2015] used an algorithm based on sequential vertex coloring

to partition constraints of a particle simulation into a 𝑘-partite graph. They observed that
the residual error in Gauss-Seidel iterations depends on the order in which the equations are
solved, and that it can possibly introduce bias.
Andrews et al. [2017] evaluated convergence behavior of the PGS algorithm for simple

contact problems, where all permutations for updating individual x𝑖 values were evaluated.
For example, with the two box stack shown in Figure 16, there are 8 non-interpenetration
constraints, which gives 40320 permutations of the constraint variables. Their work shows
that the best ordering can converge to a solution in less than half the iterations compared to
the worst ordering. Furthermore, a wide range of convergence behavior is observed when
evaluating the number of iterations that are required to achieve a certain accuracy.
In [Poulsen et al. 2010], a PGS variant of the splitting algorithm in Equation 156 is applied to

a BLCP model. In this work, l and u are affine functions of x. The algorithm framework we
outlined can easily deal with this, simply by updating the l and u vectors whenever a change is
made to x. Figure 17 shows typical convergence plots from Poulsen et al. [2010] using different
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Fig. 16. Left: A stack of two boxes with 8 non-interpenetration constraints. Middle: The LCP residual
versus the iteration count when solving non-interpenetration constraint of the two box stack example.
The convergence of the best, worst, and default orderings are shown. Right: The distribution of iterations
required to achieve 10−4 residual. From Andrews et al. [2017].

heuristics for permuting the order inside the PGS loop. Notice the non-monotone behavior of
the greedy strategy, which strongly suggests the missing convergence guarantees of the BLCP
contact model from Section 1.7.
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Fig. 17. Convergence rates taken from Poulsen et al. [2010]. On left is a box stack and on right a card
house. Different heuristics are applied for permuting the order of variables inside the PGS loop. In this
specific test example on left the Impulse curve is on top of the PGS curve. This specific study is for
dense structured rigid body scenes, such as brick walls. Notice the non-monotone behavior.

3.2.4 The Blocked Gauss-Seidel Method. The matrix splitting approach we have used to derive
the presented Gauss-Seidel methods, imply that they can not be used for the LCP contact
model presented in Section 1.5 due to a zero diagonal values and nonsymmetry of A. However,
the splitting idea can be applied in a blocked version. This results in a numerical method that is
very easy to implement and still preserves the good numerical properties of the PGS method.
To illustrate the blocking idea, we will – without loss of generalization – use the multiple

contact problem as an example. Here, a block may be defined as all variables connected to a
single contact point. When using a four-sided friction pyramid to model the friction constraints,
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Data: 𝑁 : Maximum number of sweeps/iterations, x: Initial starting iterate, A: The
coefficient matrix of the LCP, b: The right hand side vector of the LCP.

Result: x: The solution for the LCP.
1 for 𝑘 ← 1 to 𝑁 do
2 foreach block 𝑖 do
3 [b]′𝑖 ← [b]𝑖 −

∑
𝑗≠𝑖 [A]𝑖 𝑗 [x] 𝑗 ;

4 solve sub-LCP ( [A]𝑖𝑖 , [x]𝑖 , [b]′𝑖) ;
5 end
6 end

Algorithm 7: Blocked Gauss-Seidel (BGS) method. Notice that the blocking is a very
general mechanism. One may define blocks in any way and dimensions that one sees fit.
Another trait from blocking is that any kind of sub-solver can be used for solving the
blocked sub-problem.

the 𝑖th block of x will consist of the normal impulse 𝜆�̂�,𝑖 , four friction impulses 𝜆𝑡1,𝑖 , 𝜆𝑡2,𝑖 , 𝜆𝑡3,𝑖 ,
𝜆𝑡4,𝑖 and one slack variable 𝛽𝑖 . The structure of the 𝑖th block of x will then be defined as[
x
]
𝑖
=

[
𝜆�̂�,𝑖 𝜆𝑡1,𝑖 · · · 𝛽𝑖

]𝑇 , observe that we overload the square bracket notation to indicate
blocks. Similarly,

[
A
]
𝑖 𝑗
is the block of A corresponding to the 𝑖th and 𝑗 th contact point variables.

Thus, the blocked LCP can be written[
v
]
𝑖
=

∑︁
𝑗

[
A
]
𝑖 𝑗

[
x
]
𝑗
+

[
b
]
𝑖
≥ 0 ∀𝑖 , (158a)[

x
]
𝑖
≥ 0 ∀𝑖 , (158b)[

v
]𝑇
𝑖

[
x
]
𝑖
= 0 ∀𝑖 . (158c)

In practice, the blocks can be defined however suits the problem or solver best.
We next apply the Gauss-Seidel splitting to the blocked LCP. The result is a blocked Gauss-

Seidel (BGS) method (see Algorithm 7). The intuition behind this numerical method is that
all contact point variables other than the 𝑖th block are momentarily frozen while solving for
the variables of the block. The BGS approach is also known as a sweeping process or as the
non-smooth contact dynamics (NSCD) method [Jean 1999; Moreau 1999].
The sub-block LCP at line 4 can be solved using any LCP solver. Usually yet another splitting

is applied, dividing the sub-block LCP into a normal impulse sub-block and a frictional sub-
block. The normal sub-block is a 1D problem and can be solved by a projection. For instance,
when using the four-sided friction pyramid, the frictional sub-block is a 5D problem. The
frictional sub-block of A is not entirely neat as we have zero diagonal terms and non-symmetry.
However, the low dimensionality allows efficient direct enumeration. Another fix is to ignore
the principle of maximum dissipation – effectively changing the contact model – which
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Fig. 18. Simulation of a canon ball hitting a tower. The simulation uses a velocity based shock-
propagation, fixed time stepping method [Erleben 2007]. This is an example of a blocking method
using gravity to create layers of blocks of a boxed linear complementarity problem (BLCP). Incredible
details and non-viscous contact interaction can be obtained with this method.

reduces the number of variables such that we have to solve a 2D problem with a symmetric
PSD frictional sub-block matrix.
The blocked Gauss-Seidel method offers many possibilities. In Section 3.2.5 we divide a

LCP into two sub-blocks, one with all normal variables only and the other containing the
rests. If the LCP includes joints, we could have a sub-block for all the joint variables. As we
will illustrate here, being clever in making such partitions can be used to solve sub-problems
efficiently.
One such example is the joint sub-block of the LCP, this is known to be equivalent to a

symmetric positive semi-definite linear system. Thus, we can use a preconditioned conjugate
gradient (PCG) solver to solve for joint impulses rather than a PGS method. Because PCG has
the same per-iteration cost as PGS, but a better convergence rate, the result is much less joint
drifting errors at the same cost as PGS. If the number of joints is sufficiently small, we could
even use an incomplete Cholesky factorization to solve for joint impulses, resulting in very
accurate solutions.
Taking the concept of blocking a step further, BGS can be used to partitioning a configuration

into sub-blocks where specialized solvers can be applied for each sub-block. This is termed
hierarchical solvers in the graphics and gaming community. Instead of using a Gauss-Seidel
splitting, we could use a blocked Jacobi method or a blocked red and black Gauss-Seidel method.
This can be beneficial as domain decomposition techniques for distributed or parallel system
solvers.
The blocking concepts are rather generic and can be applied to the more general class of

BLCP problems too. We leave it to the reader to explore those ideas further.
Erleben [2007] realize a shock-propagation time-stepping method that can be explained as a

specific blocking method that divides the contact points in a simulation into disjoint spatial
chunks based on layers along the direction of gravity. This allows for fast propagation of
shocks in the up-down gravitational direction. Figure 18 shows an example demonstrating the
high fidelity visual details that a proper blocking strategy can create.
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Fig. 19. Simulations of wall and a tower using a blocked Projected Gauss-Seidel (PGS) type of method
for boxed linear complementarity problem (BLCP) with variable lower and upper bounds [Erleben
2005].

Erleben [2005] uses a blocked PGS for a BLCP type of problem with variable lower and upper
bounds. Figure 19 shows simulation results obtained with this method and Figure 20 illustrates
typical convergence rates obtained during a single time-step. Notice that for these specific
simulations, the method still obtains a linear convergence rate, although the convergence
constant varies a lot across simulations.
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Fig. 20. Convergence rate plots of a single time-step for each of the configurations shown in Figure 19.
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3.2.5 Staggering. We will now combine the ideas of splitting the LCP and using QP reformu-
lations. This is collectively referred to as staggering [Kaufman et al. 2008; Lötstedt 1984]. We
illustrate the idea for a multiple contact problem. We partition the LCP variables into three
index sets: one corresponding to normal impulses N , one to friction impulses F , and the last
one is slack variables 𝛽 . Applying our partition would require us to solve the two coupled
LCPs,

0 ≤ ANNxN + (bN + ANF xF ) ⊥ xN ≥ 0 (159)
and

0 ≤
[
AFF e
−e𝑇 0

] [
xF
𝛽

]
+

[
bF + AFNxN

𝜇x𝑁

]
⊥

[
xF
𝛽

]
≥ 0 . (160)

In a staggered approach, we first solve the normal force LCP and then the friction force LCP.
This is repeated iteratively until a fixed-point is reached. This is in essence a specialized blocked
Gauss-Seidel splitting method.
Using the splitting of Equation 159 and Equation 160, we note that the normal force problem

has a symmetric positive semi-definite coefficient matrix ANN making QP reformulations
possible, whereas the frictional problem has an non-symmetric matrix. However, because the
friction LCP is equivalent to the first order optimality conditions of the QP problem

x∗F = arg min
1
2
x𝑇FAFF xF + c

𝑇
F xF (161)

subject to
xF ≥ 0 and 𝑐N − e𝑇xF ≥ 0 , (162)

where 𝑐N = 𝜇xN and cF = bF + BFNxN , any convex QP method can be used to solve for the
normal and friction forces. Thus, we are guaranteed to find a solution for each sub-problem.
Whether the sequence of QP sub-problems converge to a fixed point is not obvious. There
exist many variations over this staggering scheme [Lacoursiere and Linde 2011].
Silcowitz et al. [2009] apply a kind of semi-staggering method for BLCPs. They found that

using this simple semi-staggering approach to warm start a Newton method shows how
dramatically staggering can affect the convergence behavior.

3.2.6 The Projected Gauss-Seidel Subspace Minimization Method. We extend the general PGS
method, by tailoring it to the generalized boxed LCP problem class which allows for variable
lower and upper bounds. The method we derive originates from work on solving the contact
force problem [Silcowitz et al. 2010b]. The projected Gauss-Seidel with Subspace Minimization
(PGS-SM) method is an iterative method, and each iteration consists of two phases:
(1) The first phase estimates a set of active constraints F using the standard PGS method.
(2) The second phase solves accurately for the active constraints, potentially further reducing

F for the next iteration.
Phase I. This phase consists of running a standard PGS method to solve for x. When the PGS

algorithm terminates, we know that x is feasible, although not necessarily the correct solution.
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However, v may be infeasible due to the projection on x made by the PGS method. Recall the
definitions given by Equation 110a-110c, which are practical for labeling and eliminating some
of the unknowns based on analysis of the feasibility and complementarity conditions. In fact,
the pivoting based solver exploited this aspect of the index set definitions. A similar approach
is taken by the second phase of the PGS-SM method, which solves for a a subset of variables.
Phase II. The linear system may be partitioned as in Equation 109 into three distinct sets:

free and tight lower and upper bounded. To solve this system for the unknowns vL, vU and xF,
we first compute xF by solving

AF,FxF = −
(
bF + AF,L𝝀

lo
L + AF,U𝝀

hi
U

)
. (163)

Here, AF,F is a symmetric principal sub-matrix of A. Knowing xF, we can easily compute vL
and vU,

vL = ALFxF + ALL𝝀
lo
L + ALU𝝀

hi
U + bL, (164a)

vU = AUFxF + AUL𝝀
lo
L + AUU𝝀

hi
U + bU. (164b)

Now, we check that the feasibility conditions are satisfied: vL < 0, vU > 0 and 𝝀lo
F ≤ xF ≤ 𝝀hi

F.
If all constraints are satisfied, we have reached a solution. Rather than testing the constraints
explicitly, a projection is performed on the reduced problem:

xF ← min(xhiF ,max(xloF , xF)) . (165)

We assemble the full solution vector x←
[
x𝑇F l𝑇L u𝑇U

]𝑇 before re-estimating the index sets
for the next iteration. The projection on the reduced problem will either leave the active
set unchanged or reduce it further. See Algorithm 8 for the full pseudo code of the PGS-SM
method.
Notice that Algorithm 8 does not specify which termination criteria to use . A particularly

useful termination criterion for the PGS-SM method could be to monitor if the set F has
changed from the previous iteration,

F𝑘+1 = F𝑘 . (166)

Figure 21 shows different simulation results obtained with the PGS-SM method [Silcowitz
et al. 2010b]. As shown the PGS-SM method behaves rather well for small configurations and
configurations with joints. For larger configurations, we obtain convergence results similar to
the PGS method.

3.2.7 The Non-Smooth Nonlinear Conjugate Gradient Method. Silcowitz et al. [2010a] shows
that the PGS iteration can be written in generic form using Equation 156 as

x𝑘+1 = min( u(x𝑘)︸︷︷︸
T𝑈 x𝑘+t𝑈

,max( l(x𝑘)︸︷︷︸
T𝐿x𝑘+t𝐿

,−(D + L)−1(Ux𝑘 + b︸                    ︷︷                    ︸
Tx𝑘+t

)) (167)
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Data: 𝑘𝑝𝑔𝑠 : Number of PGS sweeps per outer iteration, 𝑘𝑠𝑚: Number of subspace solves
per outer iteration, x: The initial iterate, A: The coefficient matrix of the BLCP, b:
The right hand side vector the BLCP.

Result: x: The numerical solution for the BLCP.
1 while not converged do
2 x← run PGS for at least 𝑘𝑝𝑔𝑠 iterations;
3 if termination criteria reached then
4 return x;
5 end
6 for 𝑘 ← 1 to 𝑘𝑠𝑚 do
7 L ≡ {𝑖 |x𝑖 = l𝑖};
8 U ≡ {𝑖 |x𝑖 = u𝑖};
9 F ≡ {𝑖 |l𝑖 < x𝑖 < u𝑖};

10 solve: AF,FxF = −
(
bF + AF,LlL + AF,UuU

)
;

11 vL ← AL,FxF + AL,LlL + AL,UuU + bL;
12 vU ← AU,FxF + AU,LlL + AU,UuU + bU;
13 update: (l, u);
14 xF ← min(uF,max(lF, xF));
15 x←

[
x𝑇F l𝑇L u𝑇U

]𝑇 ;
16 if termination criteria reached then
17 return x
18 end
19 end
20 end

Algorithm 8: Projected Gauss-Seidel subspace minimization (PGS-SM) method.
Observe that is can be seen as a PGS solver followed by an active-set strategy solving a
sequence of linear systems while efficiently updating the active index set. PGS becomes a
prior for making a good initial estimate of the active set.

where the lower and upper bound functions l, u : R𝑛 ↦→ R𝑛 are affine functions. The T𝐿 and T𝑈
matrices express the linear relations between the tangential friction forces and their associated
normal forces. The t𝐿 and t𝑈 vectors can be used to express fixed bound constraints, such as
a normal force constraint. Thus, the PGS iteration can be perceived as a selector function of
three affine functions.
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Fig. 21. Test cases for the comparison of PGS and PGS–SM methods with corresponding convergence
plots. Observe the jaggedness in the PGS–SM plots in (b), (c), (d), and (g). The spikes indicates that the
PGS–SM method guessed a wrong active set. This can cause the merit function to rise abruptly. The
𝜓 function is the Fischer–Burmeister function from Silcowitz et al. [2009]. The 𝑥-axis is measured in
units of one PGS iteration to make comparison easier.

Assuming a converging sequence x𝑘 → x∗ for 𝑘 →∞ the solution of PGS can be written as
the fixed point formulation,

x∗ = min(T𝑈 x∗ + t𝑈 ,max(T𝐿x∗ + t𝐿,Tx∗ + t))︸                                                ︷︷                                                ︸
≃Gx∗+g

. (168)

The right hand side of Equation 168 can be conceptually considered as the evaluation of an
affine function, Gx∗ + g. This is true if the active set of constraints is known in advance.
Therefore, we have

0 = (G − I)x∗ + g . (169)

Observe, explicit assembly is not needed for any of the matrices, instead the PGS method can
be used to implicitly evaluate the residual of any given iteration, r𝑘 = (G − I)x𝑘 + g. Thus, if
we write one iteration of the standard PGS method as

x𝑘+1 = PGS(x𝑘) (170)

then r𝑘 = x𝑘+1 − x𝑘 = PGS(𝑥𝑘) − x𝑘 . This can be thought of as the gradient of a non-
smooth nonlinear quasi-quadratic function 𝑓 (x𝑘) ≈ 1

2 ∥r
𝑘 ∥2. We are essentially seeking a
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local minimizer of 𝑓 , however, we only know its gradient ∇𝑓 (x𝑘) = r𝑘 . The Fletcher-Reeves
nonlinear conjugate gradient method is perfect for this [Nocedal and Wright 2006].
In each iteration of the conjugate gradient method we perform the update,

x𝑘+1 = x𝑘 + 𝜏𝑘p𝑘 (171)

where p𝑘 is the search direction and 𝜏𝑘 can be found using a line search method. Next a new
search direction is computed by

𝛽𝑘+1 =

∇𝑓 𝑘+12∇𝑓 𝑘2 , (172a)

p𝑘+1 = 𝛽𝑘+1p𝑘 − ∇𝑓 𝑘+1 . (172b)

In an an interactive context, the line search on 𝑓 (x𝑘+1) is dropped. Here the full step length,
𝜏 = 1, is used and the method is restarted whenever ∥∇𝑓 𝑘+1∥2 > ∥∇𝑓 𝑘 ∥2.
When computing PGS(x𝑘), it is practical to do so in-place, meaning that a PGS step is taken

implicitly on x𝑘 . Therefore, the update of x𝑘 is done separately in two places in each iteration.
The full algorithm is stated in Algorithm 9.
An implementation of the non-smooth nonlinear conjugate gradient (NNCG) method can be

found in [Silcowitz-Hansen 2010] and [Coumans 2005]. Detailed convergence studys may be
found in [Silcowitz et al. 2010a]. Figure 22 shows corresponding convergence rates for some
simulation results, taken from [Silcowitz et al. 2010a]. Figure 22 Notice the dramatic change in
convergence behavior. The improved accuracy means the NNCG method is more equipped to
deal with for instance large mass ratios. Usually PGS performs slow on such problems and
NNCG will out-perform it. Further, NNCG is overall computationally cheaper than applying a
direct method which otherwise would be able to handle large mass ratios.

3.3 Non-Smooth Newton Methods
Let us just remember the classical Newton method for solving a generic roots search problem
F(x) = 0, that is solve for x such that the vector function F is zero. The Newton method is
classically derived from a first order Taylor approximation around the 𝑘 th iterate,

F(x𝑘 + Δx) ≈ F(x𝑘) + 𝜕F(x
𝑘)

𝜕x
Δx . (173)

Setting the approximation equal to zero we have the Newton equation,

𝜕F(x𝑘)
𝜕x

Δx = −F(x𝑘) . (174)

The Δx is called the search direction or Newton direction. We solve the Newton equation for
finding the search direction. The search direction is then used in the Newton update rule given
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Data: x: The initial iterate, A: The coefficient matrix of the LCP , b: The right hand side
of the LCP.

Result: x: The numerical solution for the LCP.
1 x1 ← PGS(x0);
2 ∇𝑓 0 ← −(x1 − x0);
3 p0 ← −∇𝑓 0;
4 𝑘 ← 1;
5 while not converged do
6 x𝑘+1 ← PGS(x𝑘);
7 ∇𝑓 𝑘 ← −(x𝑘+1 − x𝑘);
8 𝛽𝑘 ←

∇𝑓 𝑘2/
∇𝑓 𝑘−1

2;
9 if 𝛽𝑘 > 1 then
10 p𝑘 ← 0 ; /* restart */
11 else
12 x𝑘+1 ← x𝑘+1 + 𝛽𝑘p𝑘−1;
13 p𝑘 ← 𝛽𝑘p𝑘−1 − ∇𝑓 𝑘 ;
14 end
15 𝑘 ← 𝑘 + 1;
16 end

Algorithm 9: Nonsmooth nonlinear conjugate gradient (NNCG) method. Observe
how a single PGS sweep is used to compute the gradient ∇𝑓 of some imaginary objective
function 𝑓 that NNCG method tries to minimize. It is surprisingly that we do not need to
be able to explicitly create 𝑓 .

by,
x𝑘+1 = x𝑘 + Δx . (175)

The Newton method can be globalized by adding a line-search method to the update rule.
This essentially consist of multiplying the search direction by a scalar line-step parameter.
Line-search strategies are sometimes avoided in interactive and real-time simulations as they
can be expensive, but back-tracking strategies are quite popular when a line-search is added. In
these notes we will not go into line-search methods, but instead focus on how to reformulate
the contact and friction problem into a root search problem. In the text below we will start
by building up the mathematical parts that allow us to define a F-function in the context of
contact problems and provide the building blocks for later showing how to assemble 𝜕F(x𝑘 )

𝜕x
and solve for Δx.
One successful approach by Ferris and Munson [1999] is to reformulate a complementar-

ity problem in terms of a NCP function whose roots satisfy the original complementarity
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(g) (h) (i)

Fig. 22. Test results comparing the nonlinear conjugate gradient method (NNCG) with projected
Gauss-Seidel (PGS) method with up to 5000 iterations. The NNCG method clearly converges faster,
and often to a higher accuracy than that of the PGS method. Notice the superior rate of convergence
in (f)-(i).

conditions. In other words, functions where the following equivalence holds:

𝜓 (𝑎, 𝑏) = 0 ⇐⇒ 0 ≤ 𝑎 ⊥ 𝑏 ≥ 0 . (176)
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Combined with an appropriate time-discretization, such a NCP function turns our contact
problem into a root finding one. In general the functions𝜓 are non-smooth, but allow us to
apply a wide range of numerical root finding methods [Munson et al. 2001].
Let us review some of the most commonly used NCP functions and show how to rephrase

the contact problem into an equivalent root search problem.

3.3.1 Minimum-Map Formulation. The first NCP function we will consider is the minimum-
map defined as

𝜓mm(𝑎, 𝑏) ≡ min(𝑎, 𝑏). (177)

The equivalence of this function to the original NCP can be verified by examining the values
associated with each conditional case for finding a root for the equation 𝜓mm = 0. We
now consider how this reformulation applies to unilateral contact constraints. Recall that
the complementarity condition associated with a contact constraint 𝜙 (q) and its associated
Lagrange multiplier 𝜆�̂� is

0 ≤ 𝜙 (q) ⊥ 𝜆�̂� ≥ 0 . (178)

We can write this in the equivalent minimum-map form of the contact constraint as

𝜓�̂� (q, 𝜆�̂�) ≡ 𝜓mm(𝜙 (q), 𝜆�̂�) = 0 , (179)

which has the following derivatives,

𝜕𝜓�̂�

𝜕q
=

{
∇𝜙 (q), 𝜙 (q) ≤ 𝜆�̂�
0, otherwise

, (180)

𝜕𝜓�̂�

𝜕𝜆�̂�
=

{
0, 𝜙 (q) ≤ 𝜆�̂�
1, otherwise

. (181)

From these cases we can see that the minimum-map gives rise to an active-set style method
where a contact is considered active if 𝜙 (q) ≤ 𝜆�̂� . Active contacts are treated as equality
constraints, while for inactive contacts the minimum-map enforces that the constraint’s
Lagrange multiplier is zero.

3.3.2 Fischer-Burmeister Formulation. An alternative NCP function is given by Fischer [1992],
who observe the roots of the following equation satisfy complementarity:

𝜓 fb(𝑎, 𝑏) = 𝑎 + 𝑏 −
√
𝑎2 + 𝑏2 = 0 . (182)

This is the Fischer-Burmeister function, and it is interesting because, unlike the minimum-map,
it is smooth everywhere apart from the point (𝑎, 𝑏) = (0, 0). For (𝑎, 𝑏) ≠ (0, 0) the partial
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derivatives of the Fisher-Burmeister function are given by:

𝛼 (𝑎, 𝑏) = 𝜕𝜓 fb

𝜕𝑎
= 1 − 𝑎

√
𝑎2 + 𝑏2

, (183)

𝛽 (𝑎, 𝑏) = 𝜕𝜓 fb

𝜕𝑏
= 1 − 𝑏

√
𝑎2 + 𝑏2

. (184)

At the point (𝑎, 𝑏) = (0, 0) the derivative is set-valued. For Newton methods it suffices to
choose any value from this sub-gradient. Erleben et al. [2011] compared how the choice of
derivative at the non-smooth point affects convergence for LCP problems and found no overall
best strategy. Thus, for simplicity we make the arbitrary choice of

𝛼 (0, 0) = 0 , (185)
𝛽 (0, 0) = 1 . (186)

For a contact constraint𝜙 , with Lagrangemultiplier 𝜆�̂� wemay thenwrite our contact constraint
alternatively as,

𝜓�̂� (q, 𝜆�̂�) ≡ 𝜓 fb(𝜙 (q), 𝜆�̂�) = 0 , (187)

with derivatives given by

𝜕𝜓�̂�

𝜕q
= 𝛼 (𝜙, 𝜆�̂�)∇𝜙 , (188)

𝜕𝜓�̂�

𝜕𝜆�̂�
= 𝛽 (𝜙, 𝜆�̂�) . (189)

3.3.3 Friction. Coulomb’s law can be derived from a principle of maximal dissipation that
requires the frictional forces remove the maximum amount of energy from the system while
having their magnitude bounded by the normal force:

arg min
𝝀𝑡

v𝑡
𝑇𝝀𝑡 subject to ∥𝝀𝑡 ∥ ≤ 𝜇𝜆�̂� . (190)

This minimization defines an admissible cone that the total contact force must lie in. The
Lagrangian associated with this minimization is

L(𝝀𝑡 , 𝜆�̂�) ≡ v𝑡
𝑇𝝀𝑡 + 𝛾 (∥𝝀𝑡 ∥ − 𝜇𝜆�̂�) . (191)

where 𝛾 is a slack variable used to enforce the Coulomb constraint that the friction force
magnitude is bounded by 𝜇 times the normal force magnitude. When 𝜇𝜆�̂� > 0 the problem
satisfies Slater’s condition [Boyd and Vandenberghe 2004] and we can use the first-order
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Karush-Kuhn-Tucker (KKT) conditions, given by

s(u,𝝀𝑡 , 𝛾) ≡ J𝑡u + 𝛾
𝜕∥𝝀𝑡 ∥
𝜕𝝀𝑡

= 0 (192)

0 ≤ 𝛾 ⊥ 𝜇𝜆�̂� − ∥𝝀𝑡 ∥| ≥ 0 , (193)

where 𝛾 is a slack variable that governs stick/slip behavior, and we used the block notation for
the mapping v = Ju given by

v =

[
𝑣�̂�
v𝑡

]
=

[
J�̂�
J𝑡

]
︸︷︷︸

J

u . (194)

The complementarity condition may be directly written using any NCP function as,

𝜓𝑡 ≡ 𝜓 (𝛾, 𝜇𝜆�̂� − ∥𝝀𝑡 ∥) = 0 . (195)

3.3.4 Newton’s Method. We may now define generically for any chosen NCP function,

x ≡


u
𝜆�̂�
𝝀𝑡
𝛾

 and F(x) ≡


Mu − J𝑇𝜆 + f
𝜓�̂� (𝜙 (q), 𝜆�̂�)
s(u,𝝀𝑡 , 𝛾)

𝜓𝑡 (𝛾, 𝜇𝜆�̂� − ∥𝝀𝑡 ∥)

 = 0 , (196)

Observe the top-row in F is the time-discretized Newton Euler equations. One may replace
the normal reformulation with one that is based on the separation velocity 𝑣�̂� rather than the
normal constraint 𝜙 . In which case we have𝜓�̂� ( ¤𝜙, 𝜆�̂�) = 𝜓�̂� (𝑣�̂�, 𝜆�̂�) = 𝜓�̂� (J�̂� u, 𝜆�̂�). We can solve
for the roots of𝜓�̂� and𝜓𝑡 using Newton’s methods by linearizing the equation F = 0 in terms
of velocities and the Lagrange multipliers to obtain the following system,

M −J�̂�𝑇 −J𝑡𝑇 0
J�̂�

𝜕𝜓�̂�
𝜕𝜆�̂�

0 0
J𝑡 0 𝜕s

𝜕𝝀𝑡

𝜕s
𝜕𝛾

0 𝜕𝜓𝑡
𝜕𝜆�̂�

𝜕𝜓𝑡
𝜕𝝀𝑡

𝜕𝜓𝑡
𝜕𝛾



Δu
Δ𝜆�̂�
Δ𝝀𝑡
Δ𝛾

 = −


f
𝜓�̂�
s
𝜓𝑡

 . (197)

Here we have considered a single contact constraint for simplicity. The extension to a system
of contacts is straightforward. However, it is clear that, due to the frictional constraints,
Equation 197 is non-symmetric, which restricts the numerical methods we can use to solve it.
Macklin et al. [2019] proposed a fixed-point iteration to eliminate 𝛽 and obtain a symmetric
system that can be solved with iterative Krylov methods.

3.3.5 Preconditioning. Similar to prox formulations, the NCP functions presented in this
section have a free parameter 𝑟 that may be used to rescale the functions. Specifically, a
solution to𝜓 (𝑎, 𝑏) = 0, is also a solution to the scaled problem,𝜓 (𝑎, 𝑟𝑏) = 0, where 𝑟 may be
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Fig. 23. Left: The minimum-map of a unilateral constraint has a kink in it at the cross over point. Right:
Choosing an appropriate r-factor can remove the discontinuity by forcing both terms to be parallel. For
a single constraint this results in a straight-line error function that can be solved in one step regardless
of starting point. In the case of Fischer-Burmeister (green) the error function’s curvature is reduced.
For illustration purposes we have shown the constraint function 𝑐 = 1

4𝜆 −
1
8 > 0, which has a unique

solution at 𝜆 = 1
2 .

chosen as any positive constant. In practice this parameter is important for the robustness of
Newton methods, and we visualize its effect on the NCP functions in Figure 23.
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4 SELECTED TOPICS
We will now look a little on topics that goes beyond what could be considered the classical
fundamental syllabus of contact and friction simulation.
We have chosen to cover the topic of proximal operators as these are a quite general and

powerful framework for expression the contact physics as well as with ease provide a simple
way to derive numerical methods. Our treatment is extensive and show many facets of how to
use proximal operators in a simulator.
Following the treatment of proximal operators we dive into more advanced friction modeling.

We present a recent model that originated from the field of computer graphics which can
account for anisotropic friction effects. The model is named Matchstick model and it fits
beautifully into the framework of the proximal operators and as such we feel it is a good fit for
showing the need for more general formulations, while at the same time underlining current
state-of-the-art models that try to move beyond limitations of isotropic Coulomb friction law.
The last topic we cover in this section is on presenting one large and fundamentally different

alternative to the constraint based methods which we have covered extensively in previous
chapters. The topic is penalty-based methods for contact modeling. We have selected to cover
this topic to provide a broader and more complete coverage of the subject of contact and
friction simulation. Besides the penalty-based and constraint-based approaches are sometime
combined in actual implementations into "hybrid" simulators. This is evident from the strong
connection between constraint stabilisation and penalty-based methods.

4.1 Proximal Operators
Iterative methods are popular for solving contact force problems in rigid body dynamics. We
have extensively covered many of the LCP variations of these type of methods. The ideas
do extend into other types of models. One such model is based on the proximal operator. It
is a much more general model that allow one to express more nonlinear and non smooth
properties in a compact way than the LCP approach often would allow one to do. In this
section we extend many previous ideas covered in previous sections into this more general
abstract setting building on proximal operators. We provide a mathematical foundation for
computer graphics researchers for iterative (PROX) schemes based on proximal operators. Our
presentation follows the outline of Erleben [2017]. We derive a class of iterative Jacobi and
blocked Gauss-Seidel variants that theoretically proven always converge and provides flexible
plug and play framework for exploring different friction laws as we describe in Section 4.2.
PROX methods are both fast, scale to handle a large number of rigid bodies, deal with non-
convex shapes, accurately model the physics, and be robust as well as predictable in case of
user interactions as illustrated in Figure 24.
The PGS type of methods have become quite a de-facto standard for interactive entertainment.

The robustness of PGS and PSOR variants are well-known as is their poor convergence behavior
[Andrews et al. 2017; Erleben 2007]. We provide a derivation of such iterative schemes using
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Fig. 24. Examples of rigid body simulation using PROX schemes. Top row shows digital prototyping
application studying jamming due to friction properties, upper-middle: packing into a container, middle-
lower: building collapse due to poor design. Bottom demonstrates structured stacking.

proximal operators. We name these schemes PROX methods to avoid confusion with the
traditional PGS variants as described in Section 3.2. We will take a different path based on
proximal operators than the usual PGS-type derivation such as the one done by Silcowitz et al.
[2010a].
Interestingly, the usual PGS complementarity based friction box-model variants are special

cases of a PROX method with a fixed constant 𝑟 -factor (to be explained later). This is the reason
why PGS can diverge and why the PROX method setting is theoretically guaranteed to always
converge [Foerg et al. 2006; Parikh and Boyd 2014]. Further, PGS is tied to the box-model for
performance reasons as it provides a small tight blocked memory footprint. PROX methods are
in their very derivation not limited to such friction models. PROX schemes provide one with
both a theoretical guarantee of convergence and a flexible modeling of any convex multi-set
friction law. For completeness we show the model can express Newton style impact laws, and
post-stabilization. The proximal operator model is derived directly from physical principles
and is in our opinion a very powerful approach. One benefit is that the iterative scheme for
computing a solution more or less comes for free directly from the model it self. No extra
discretization are needed. Another benefit of this model is that it generalizes to general limit
surfaces [Goyal et al. 1989] and can include torsional friction and Coulomb friction [Leine and
Glocker 2003].
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Fig. 25. The proximal operator for a set C applied to a point z. Observe that computing a solution x★

for the proximal operator is similar to point in set testing and projection to closest point on a boundary.
The set C can have a non-smooth boundary.

4.1.1 The Proximal Operator Model. We will present a contact force model for a single contact
point. The notation makes use of a proximal operator, proxC (z). The proximal point of a
convex set C to a point z is the point in C that minimizes the distance to z,

proxC (z) ≡ arg min
x∈𝐶

∥z − x∥2 , z ∈ R𝑛 . (198)

this is called the proximal operator [Parikh and Boyd 2014]. This definition is illustrated in
Figure 25. For friction modeling we usually only require C to be convex. Notice that C is strict
convex then the solution is always unique. The weaker requirement of only being convex can
imply multiple solutions. One advantage of this formulation is that we can work with a C that
has a non-smooth boundary. That is the normal cone at a boundary point has a sub-space of
normals. The requirement for C to be convex is one of the ingredients connected to giving
strong guarantee that a fixed point scheme will converge. The proximal operator definition
can be weaken to give meaning for non-convex sets too. We do not go into this discussion in
this text.
Given the normal contact velocity 𝑣�̂� ∈ R then the non-penetration constraints can be stated

as
𝑣�̂� ≥ 0, 𝜆�̂� ≥ 0, and 𝑣�̂�𝜆�̂� = 0 , (199)

or equivalently the fixed point relationship have the same solution as the non-penetration
constraint [Jourdan et al. 1998]

𝜆�̂� = proxN (𝜆�̂� − 𝑟�̂�𝑣�̂�) for 𝑟�̂� > 0 , (200)
where N ≡ {𝛾 ∈ R | 𝛾 ≥ 0}, 𝜆n̂ ∈ R is the magnitude of the normal force, and 𝑟�̂� is a
mathematical scalar variable named an 𝑟 -factor, we use the subscript here to denote that
the value is specific for the normal force as we will see later friction forces can have their own
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(a) (b)

Fig. 26. In (a) we observe that if the normal force is positive then the proximal operator only has a
fixed point if the normal velocity is zero. In (b) the case of zero normal shows that a fixed point only
exist if the normal velocity is non-negative. This proves the fixed point formulation with the proximal
operator has the same solutions as the non-penetration constraint.

𝑟 -factor value. The equation holds for all 𝑟�̂� > 0 and the exact 𝑟 -factor value will have practical
impact on convergence. We can graphically illustrate how the proximal operator identifies the
same solutions as the complementary form of the non-penetration constraint by using the
real number line. Here N is all numbers from origin to the right. The case-by-case analysis is
shown in Figure 26.
It is not difficult to show that the proximal operator formulation includes all the LCP based

formulations. For doing this it is convenient to use the slightly more general proximal operator
definition

x★ ≡ proxKC (x − 𝑟 (Ax + b)) , K = A−1, C = {x | x ≥ 0} ∀𝑟 > 0 . (201)
Let z = x − 𝑟 (Ax + b) then by more general definition of the proximal operator we have

x★ ≡ arg min
x∈C

1
2
∥x − z∥2K , (202)

which we can algebraic transform into

x★ ≡ arg min
x∈C

𝑟 2 (Ax + b)𝑇 K (Ax + b) . (203)

The positive term 𝑟 2 can be dropped without affecting the solution of the minimization problem
and the quadratic term can be written out to yield the equivalent problem,

x★ ≡ arg min
x∈C

x𝑇A𝑇KAx + b𝑇K
(
A𝑇 + A

)
x + b𝑇Kb . (204)

Using the explicit choice of K = A−1 and assuming A is symmetric this reduces to

x★ ≡ arg min
x∈C

x𝑇Ax + 2b𝑇x (205)
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or
x★ ≡ arg min

x∈C

1
2
x𝑇Ax + b𝑇x . (206)

This happens to be the equivalent quadratic problem (QP) reformulation of the linear com-
plementarity problem. This can be verified by noticing that the solution to the first order
optimality conditions for the QP formulation is the solution to the linear complementarity
problem. This completes the proof that solutions of LCP formulations are also solutions for
the proximal operator formulations.
Given the coefficient of friction 𝜇 > 0 and the magnitude of normal force 𝜆�̂� ≥ 0, then the

planar friction force 𝝀𝑡 ∈ R2 is bounded by the friction cone,

𝝀𝑡 ∈ F (𝜇𝜆�̂�) (207)

where the friction cone could be defined as we did in Section 1.5,

F (𝜇𝜆�̂�) ≡
{
𝜸 𝑡 ∈ R

2 �� 𝜸 𝑡 ≤ 𝜇𝜆�̂�} . (208)

This is the typical isotropic Coulomb friction law. We will later show another example. For
the proximal operator model to work we only need F to be a convex set. We may visualize
the friction cone in 3D where the 𝑥 and 𝑦 axis gives the components of the frictional force
and the 𝑧-axis gives the normal force magnitude as shown in Figure 27. Another often used
visualization is to make a corresponding 2D visualization of the intersection of the cone with
the 𝑧-plane that corresponds to the current normal force as shown in middle of Figure 27.
Because the friction force scales linear with normal force the shape of the 2D intersection will
not change for any positive normal force and we one may therefore just draw the shape of the
cone for the normal force value 𝜆�̂� = 1. The cone-shape then illustrates the magnitude of the
coefficient of friction for different directions as seen in right side Figure 27.
According to principle of maximum dissipation the friction force should dissipate as much

work as possible from the system. Given the friction force 𝝀𝑡 ∈ F (𝜇𝜆�̂�) and the tangential
contact velocity, v𝑡 ∈ R2, then the dissipation power, 𝑃𝝀𝑡

, is,

𝑃𝝀𝑡
= 𝝀𝑡

𝑇v𝑡 . (209)

Note that dissipation implies that 𝑃𝝀𝑡
< 0. According to the principle of maximum dissipation

the power, 𝑃𝜸𝑡
, done by any other possible friction force, 𝜸 𝑡 ∈ F (𝜇𝜆�̂�), has to be larger than or

equal to 𝑃𝝀𝑡
. From this we have

𝑃𝝀𝑡
≤ 𝑃𝜸𝑡

, (210a)

𝝀𝑡
𝑇v𝑡 ≤ 𝜸 𝑡

𝑇v𝑡 , (210b)

0 ≤ 𝜸 𝑡
𝑇v𝑡 − 𝝀𝑡𝑇v𝑡 =

(
𝜸 𝑡 − 𝝀𝑡

)𝑇 v𝑡 . (210c)

Resulting in the condition

∀𝜸 𝑡 ∈ F (𝜇𝜆�̂�) and
(
𝜸 𝑡 − 𝝀𝑡

)𝑇 v𝑡 ≥ 0 . (211)
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Fig. 27. On the left the isotropic Coulomb friction cone is shown as an ice-cream cone, in the middle
the 2D plane intersection with the normal force plane is representing the shape of the friction set, and
on the right we have a map of the set of coefficients of friction. Observe that the map of coefficients of
frictions is a convenient representation of any friction cone that can be used to generate both the 2D
friction set and the 3D friction cone if needed.

Recall, we derived this condition in Section 1.5 from first order optimality conditions, here we
just took a more direct geometric approach for deriving this condition. Now a solution to this
variational inequality is equivalent to the fixed point of the proximal operator,

𝝀𝑡 = proxF (𝜇𝜆�̂�) (𝝀𝑡 − 𝑟𝑡v𝑡 ) for 𝑟𝑡 > 0 . (212)

Figure 28 illustrates how the principle of maximum dissipation is connected to the proximal
operator, by connecting the variational inequality to the definition of the tangent cone and
finally testing if −v𝑡 is included in the normal cone at 𝝀𝑡 . The tangent and normal cone
viewpoint is quite helpful in handling the case of zero sliding velocity. In this case we note
that there are no dissipating forces. This means the tangent cone is all directions in the plane
and the normal cone contains the zero-vector. This means that any force in the friction cone is
a solution to principle of maximum dissipation. Notice that the proximal operator will have
this solution too.
Since v =

[
𝑣�̂�
𝑇v𝑡𝑇

]𝑇 can be written as a linear combination of 𝝀 =
[
𝜆�̂�
𝑇 𝝀𝑡

𝑇
]𝑇 we have

v = A𝝀 + b. The equation holds for all values of the variable 𝑟𝑡 but the actual value used will
have impact on convergence. Substituting v into the proximal operator lead to a fixed point
problem, [

𝜆�̂�
𝝀𝑡

]
︸︷︷︸

𝝀

=

[
proxN (𝜆�̂� − 𝑟�̂� (ANN𝜆�̂� + ANF𝝀𝑡 + bN))

proxF (𝜇𝜆�̂�) (𝝀𝑡 − 𝑟𝑡 (AFN𝜆�̂� + AFF𝝀𝑡 + bF))

]
︸                                                     ︷︷                                                     ︸

F(𝝀)

. (213)
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(a) (b)

(c) (d)

Fig. 28. The proximal operator can be derived from the principle of maximum dissipation. We start with
some convex friction cone and assume a non-zero sliding velocity. Given the velocity vector we may
look in the whole half-space of dissipating forces (a). In this space we locate the maximum dissipating
force as done in (b). In (c) we slightly reformulate the dissipation test to look at the force difference
vectors. Any such force difference vector must make a positive dot product with the velocity. That is
equivalent to saying that any direction in the tangent cone at 𝝀𝑡 must make a positive product with
the velocity. Taking this one step further that means the negative velocity must be in the normal cone
at 𝝀𝑡 . That is equivalent to say that any point on the half-line from 𝝀𝑡 in the negative velocity direction
must have 𝝀𝑡 as the closest point on the surface as shown in (d).

Here N and F are index sets used to extract blocks from A corresponding to normal force
variables or friction force variables. Now one could compute the iterates, 𝝀𝑘+1 = F(𝝀𝑘), more
details are given in Section 4.1.2. The iteration sequence converges locally if the spectral radius
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of the Jacobian,

𝜌

(
𝜕F(𝝀)
𝜕𝝀

)
< 1 , (214)

remains limited and smaller than one. This requirement can be realized by making a suitable
choice of the parameters 𝑟�̂� and 𝑟𝑡 [Foerg et al. 2006; Niebe 2014; Parikh and Boyd 2014; Studer
2008].
The Newton-Euler equations and kinematic maps are given by

M ¤u = f + J𝑇𝝀 , (215a)
¤q = Hu , (215b)

where u is the generalized velocity vector, q is generalized position vector,M is the mass matrix,
J is the contact Jacobian, and f holds external and gyroscopic force terms, see Section 1.10.1
for details. The relative contact velocity is computed from

v = Ju . (216)

All the contact constraints are now formulated using proximal operators,

∀𝑖 𝜆�̂�𝑖 = proxN𝑖

(
𝜆�̂�𝑖 − 𝑟�̂�𝑖

(
𝑣�̂�
+
𝑖 + 𝜀�̂�𝑖𝑣�̂�−𝑖

) )
, (217a)

∀𝑖 𝝀𝑡 𝑖 = proxF𝑖
(
𝝀𝑡 𝑖 − 𝑟𝑡 𝑖

(
v𝑡
+
𝑖 + 𝜀𝑡 𝑖v𝑡−𝑖

) )
(217b)

where sub-index 𝑖 refers the contact point index and

N𝑖 ≡ {𝛾 ∈ R | 𝛾 ≥ 0} , (218a)

F𝑖 ≡
{
(𝛾𝑡 , 𝛾𝑏, 𝛾𝜏 ) ∈ R3

���� (𝛾𝑡𝑎 )2
+

(𝛾𝑏
𝑏

)2
+

(𝛾𝜏
𝑐

)2
≤ 1

}
(218b)

and

𝑎 = 𝜇𝑡𝑖𝜆�̂�𝑖, 𝑏 = 𝜇𝑏𝑖𝜆�̂�𝑖, and 𝑐 = 𝜇𝜏𝑖𝜆�̂�𝑖 . (219)

Above we exploit the advantage of the proximal operator to work for any convex set and
changed F to be the Coulomb-Contensou friction model, a generalization over the previous
definition in Equation 208. We used v− and v+ to denote pre- and post-impact contact velocities.
We have also applied a Newton impact law. Usually one has 𝜀�̂�𝑖 ∈ [0, 1] and 𝜀𝑡 𝑖 = 0. Further,
one may choose 𝑟 = 𝑟�̂�𝑖 = 𝑟𝑡 𝑖 > 0. Although other 𝑟 -factor strategies can be used. Using a
time-discretization on the differential equations we have

u𝑡+ℎ = u𝑡 + ℎM−1f +M−1J𝑇𝝀 . (220)

BothM and J depends on q, f depends on both q and u due to gyroscopic force terms. For now
we ignore these dependancies and will specify them when we introduce the time-stepping
method in Section 4.1.5. The pre-impact contact velocities are given by v− = Ju𝑡 and the
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post-impact velocities are given by v+ = Ju𝑡+ℎ . Multiplying Equation 220 by J from the left
yields,

v+ = JM−1J𝑇𝝀 + Ju𝑡 + ℎJM−1f . (221)

Defining

z ≡ 𝝀 − R
(
v+ + Ev−

)
, (222a)

= 𝝀 − R
(
JM−1J𝑇𝝀 + Ju𝑡 + ℎJM−1f + EJu𝑡

)
(222b)

where R and E are diagonal matrices containing 𝑟 -factors and 𝜀-coefficients. Now the proximal
operators read

∀𝑖 𝜆�̂�𝑖 = proxN𝑖

(
zN𝑖

)
, (223a)

∀𝑖 𝝀𝑡 𝑖 = proxF𝑖
(
zF𝑖

)
. (223b)

The solutions of these are given by

∀𝑖 𝜆�̂�𝑖 = max
(
0, zN𝑖

)
(224a)

∀𝑖 𝝀𝑡 𝑖 =

{
zF𝑖 ; zF𝑖 ∈ F𝑖
arg min𝜸∈F𝑖

zF𝑖 −𝜸2 ; otherwise
. (224b)

The last case computes the closest point in the F𝑖 to the point zF𝑖 . This can be solved as
described in Section 4.1.3.

4.1.2 Iterative Methods for the Fixed-Point Scheme. A Jacobi-scheme can be used to solve the
fixed point problem in Equation 223. This consists of first computing the iterate,

z𝑘 = 𝝀𝑘 − R
©«JM−1J𝑇︸  ︷︷  ︸

A

𝝀𝑘 + Ju𝑡 + ℎJM−1f + EJu𝑡︸                    ︷︷                    ︸
b

ª®®¬ , (225a)

= 𝝀𝑘 − R
(
A𝝀𝑘 + b

)
. (225b)

Next one solves for the next iterate of 𝜆𝑘+1 using,

∀𝑖 𝜆�̂�
𝑘+1
𝑖 = proxN𝑖

(
z𝑘N𝑖

)
, (226a)

∀𝑖 𝝀𝑡
𝑘+1
𝑖 = proxF 𝑘

𝑖

(
z𝑘F𝑖

)
(226b)

where F 𝑘𝑖 is defined using the value of the 𝑘 th iterate, 𝑎 = 𝜇𝑡𝑖𝜆�̂�
𝑘
𝑖 , 𝑏 = 𝜇𝑏𝑖𝜆�̂�

𝑘
𝑖 and 𝑐 = 𝜇𝜏𝑖𝜆�̂�

𝑘
𝑖 . As

it stands the scheme is inherently easily parallelized.
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A Gauss–Seidel scheme can be created from the Jacobi scheme. The idea is to always use the
most updated 𝝀-values in any computation. Let z denote the most updated value at all times.
The normal and friction solves for the 𝑖th contact is now computed using,

𝜆�̂�
𝑘+1
𝑖 = proxN𝑖

(
zN𝑖

)
, (227a)

𝝀𝑡
𝑘+1
𝑖 = proxF 𝑘+1

𝑖

(
zF𝑖

)
. (227b)

Observe that F 𝑘+1𝑖 is used instead of F 𝑘𝑖 . After having solved for 𝜆�̂�𝑘+1𝑖 and 𝝀𝑡
𝑘+1
𝑖 then all z

dependent entries must be updated before moving on to the next contact. For this update
we present the factorization technique from [Erleben 2007]. The idea is to write z as z ≡
𝝀 + R (Jw + b) and use w ≡ M−1J𝑇𝝀. For convenience we introduce the index set of all the
bodies, B, and the index set of the 𝑖th contact point, I ≡ {N𝑖, F𝑖}. Now we can find the most
updated value of zI before computing the contact forces,

zI = 𝝀𝑘I − R𝑖 (JIBw + bI) . (228)

After having computed the contact forces we can update w so its value is ready for the next
contact,

w =

(
M−1J𝑇

)
BI

(
𝝀𝑘+1I − 𝝀𝑘I

)
. (229)

We have summarized the complete schemes in Algorithms 10 and 11. We will keep on iterating
using the PROX scheme until the residual error has absolutely or relatively converged, or we
exceed a maximum iteration count. A residual error can defined as

e𝑘+1 = 𝝀𝑘+1 − 𝝀𝑘 . (230)

For making an implemetation we are missing two intrinsic parts of the PROX scheme, one is
how the closest points on an ellipsoid is computed and the other is how to control the 𝑟 -factors.
The next two subsection will cover these aspects.
An interesting question to take note of is how good accuracy one can expect from these

iterative schemes. This is important when setting the tolerance for absolute convergence. If
too aggressive one will never find a solution and if too loose one will never get close enough.
Here we present a rough estimate of the upper bound of the expected residual error under the
best possible assumptions. Assume the scheme is in the limit of convergence that means that
the proximal operator fixed points has been reached. A fixed point means we have

𝝀★ = 𝝀★ − 𝑟
(
A𝝀★ + b

)
.

The residual error is defined as the norm of the residual vector

e
(
𝝀𝑘+1

)
= 𝝀𝑘+1 − 𝝀𝑘 + 𝑟

(
A𝝀𝑘 + b

)
.

In the limit of 𝑘 →∞ and assuming convergence to the closest possible numerical representa-
tion 𝝀 of the fixed point solution 𝝀★ we have 𝝀 = (1 + 𝜀)𝝀★ where 𝜀 is the machine epsilon
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Data: K: indices of all contacts, B indices of all bodies, J,M, b,R,𝝀0, 𝜈
Result: 𝝀𝑘

1

(
𝑘,𝝀𝑘 , 𝜖𝑘

)
←

(
0,𝝀0,∞

)
;

2 while not converged do
3 w← M−1 J𝑇𝝀𝑘 ;
4 z← 𝝀𝑘 − R (Jw + b);
5 foreach 𝑖 ∈ K do
6 𝜆�̂�

𝑘+1
𝑖 ← proxN𝑖

(
zN𝑖

)
;

7 𝝀𝑡
𝑘+1
𝑖 ← proxF𝑖 (𝜆�̂�𝑘𝑖 )

(
zF𝑖

)
;

8 end
9 𝜖𝑘+1 =

𝝀𝑘+1 − 𝝀𝑘∞;
10 if 𝜖𝑘+1 > 𝜖𝑘 then
11 R← 𝜈R;
12 else
13

(
𝝀𝑘 , 𝜖𝑘 , 𝑘

)
←

(
𝝀𝑘+1, 𝜖𝑘+1, 𝑘 + 1

)
;

14 end
15 end

Algorithm 10: The PROX Jacobi variant with adaptive 𝑟 -Factor strategy. For efficiency
the matrix productM−1J𝑇 may be precomputed and stored in transposed form.

and
∥e (𝝀)∥ ≤ 𝑟 𝜀 ∥A∥

𝝀★
 .

Of course 𝝀★ is computational unknown but a conservative upper bound can be computed
by tracking the minimum norm of the iterates. The adaptive 𝑟 -factor strategy guarantees a
contraction mapping and hence the bound will continue to improve while iterating. The norm
of A can be estimated too by exploiting the factorization of A ≡ JM−1J or from computing
the spectral radius of the explicit assembly of A or by applying an iterative method such as
Powers method that avoids the need for actual explicit assembly of A.

4.1.3 Closest Point on Ellipsoid. For isotropic friction models or omission of torque effects
the ellipsoid collapses to a 2D ellipse and finding the closest point can be done analytically
by finding the largest positive real root of a 4th order polynomial. However, we consider the
Coulomb-Contensou law. That means our ellipsoid models anisotropic spatial friction with
torque effects and corresponds to computing the roots of 6th order polynomial. Hence, we seek
a robust and efficient numerical method. For general convex sets one may use the Minikowsky
difference to transform the problem into that of finding the closest point between origin and
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Data: K: indices of all contacts, B indices of all bodies, J,M, b,R,𝝀0, 𝜈
Result: 𝝀𝑘

1

(
𝑘,𝝀𝑘 , 𝜖𝑘

)
←

(
0,𝝀0,∞

)
;

2 while not converged do
3 w← M−1 J𝑇𝝀𝑘 ;
4 foreach 𝑖 ∈ K do
5 I ≡ indices of block N𝑖, F𝑖 ;
6 zI ← 𝝀𝑘I − R𝑖 (JIBw + bI);
7 𝜆�̂�

𝑘+1
𝑖 ← proxN𝑖

(
zN𝑖

)
;

8 𝝀𝑡
𝑘+1
𝑖 ← proxF𝑖 (𝜆�̂�𝑘+1𝑖 )

(
zF𝑖

)
;

9 w← w +
(
M−1J𝑇

)
B,I

(
𝝀𝑘+1I − 𝝀𝑘I

)
;

10 end
11 𝜖𝑘+1 =

𝝀𝑘+1 − 𝝀𝑘∞;
12 if 𝜖𝑘+1 > 𝜖𝑘 then
13 R← 𝜈R;
14 else
15

(
𝜆𝑘 , 𝜖𝑘 , 𝑘

)
←

(
𝜆𝑘+1, 𝜖𝑘+1, 𝑘 + 1

)
;

16 end
17 end

Algorithm 11: The PROX Gauss–Seidel variant with adaptive 𝑟 -Factor strategy. The
productM−1J𝑇 may be precomputed as for the Jacobi variant.

a convex set. The GJK algorithm is an example of such an algorithm exploiting these ideas.
The advantage of a GJK approach is that it is generally applicable to any friction model as
long as the limit surfaces defines a convex set. However, in our case the friction model is an
ellipsoid and the generality of GJK is uncalled for. Here we present an approach that exploits
the corresponding 6th order polynomial and apply a root-search method to search for the root.
Let 𝑎, 𝑏, 𝑐 > 0 be given. These parameters defines an ellipsoid surface. The ellipsoid surface

consists of all points x ∈ R3 where

𝑓 (x) = x𝑇Kx − 1 = 0 (231)

and K is a positive diagonal matrix given by

K =


1
𝑎2 0 0
0 1

𝑏2 0
0 0 1

𝑐2

 . (232)
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Given a point z ∈ R3 outside the ellipsoid, 𝑓 (z) > 0, then we wish to find the closest point, x★
on the ellipsoid surface to z,

x★ = arg min
𝑥

1
2
∥x − z∥2 subject to 𝑓 (x) = 0 . (233)

The first order optimality conditions yields

x★ − z − 𝜆★∇𝑓 (x★) = 0 . (234)

Using ∇𝑓 (x★) = 2Kx★ and 𝑡 = −2𝜆★ we have,

x★ = (𝑡K + I)−1z . (235)

Further, we must have that x★ lies on the surface of the ellipsoid,

𝑓 (x★) = 𝑓 ((𝑡K + I)−1z) = 0 . (236)

We now define this as a scalar function like this,

𝑔(𝑡) ≡ 𝑓 ((𝑡K + I)−1 z) , (237)

=
𝑎2𝑧2

1

(𝑎2 + 𝑡)2
+

𝑏2𝑧2
2

(𝑏2 + 𝑡)2
+

𝑐2𝑧2
3

(𝑐2 + 𝑡)2
− 1 . (238)

We observe that our problem of finding the closest point has been reformulated into the
problem of finding a root of 𝑔(𝑡) = 0. From geometry we know that the curve given by 𝑔(𝑡)
can pierce an non-degenerate ellipsoid in at most two points. If 𝑓 (z) > 0 then we are seeking
the intersection point with 𝑡 > 0. If 𝑓 (z) ≤ 0 then z is already in the ellipsoid and we simply
can return z as our solution.
For 𝑡 > 0 we have 𝑑

𝑑𝑡
𝑔(𝑡) < 0. However, 𝑔(𝑡) is very steep for small 𝑡-values and very flat for

larger 𝑡-values. Thus, a binary search numerical method is a good choice for finding the positive
root of 𝑔(𝑡). Alternatively a Newton-Raphson method can be applied, although Erleben [2017]
found a Newton-Raphson method to diverge or find negative roots when the root approaches
the flat parts of the 𝑔-function.
An initial bracketing technique is needed for the binary search method. The minimum

𝑡-value for the search interval is given by 𝑡min = 0 the maximum 𝑡-value for the search interval
can be estimated as,

𝑡guess = max{𝑎, 𝑏, 𝑐}∥z∥ . (239)
The maximum 𝑡-value is then given by the minimum non-negative integer, 𝑘 where𝑔(𝑡max) < 0
and 𝑡max ≡ 𝛼𝑘𝑡guess, where 𝛼 > 1 is the scalar expansion coefficient of the interval. Erleben
[2017] uses 𝛼 = 1.5. In order to make the binary search method more robust in the sense of
having better precision the problem can be scaled to be within the unit-cube. That is a scaling
factor is computed as

𝑠 =
1

max{1, 𝑎, 𝑏, 𝑐, 𝑧𝑡 , 𝑧𝑏, 𝑧𝜏 }
(240)
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and then re-define the problem as follows.

z← 𝑠 z, and {𝑎, 𝑏, 𝑐} ← {𝑠 𝑎, 𝑠 𝑏, 𝑠 𝑐} . (241)

However, when the scheme has converged one must remember to convert the solution back to
the unscaled problem. The bisection method is summarized in Algorithm 12.

Data: {𝑎, 𝑏, 𝑐}: Ellipsoid shape parameters, z = {𝑧𝑡 , 𝑧𝑏, 𝑧𝜏 }: Query point, 𝜖 > 0: User
specified accuracy

Result: x The closest point on the ellipsoid
1 // Re-scale problem for better numerical precision

2 𝑠 ← 1
max(1,𝑎,𝑏,𝑐,|𝑧𝑡 |,|𝑧𝑏 |,|𝑧𝜏 |) ;

3 z← 𝑠 z;
4 {𝑎, 𝑏, 𝑐} ← {𝑠 𝑎, 𝑠 𝑏, 𝑠 𝑐};
5 // Perform inside ellipsoid test
6 if 𝑓 (z) < 𝜖 then
7 return z;
8 end
9 // Perform bracketing for root search

10 𝑡0 ← 0;
11 𝑡1 ← max (𝑎, 𝑏, 𝑐) ∥c∥;
12 𝛼 ← 1.5 // Expansion coefficient, can be tuned
13 while 𝑔(𝑡1) > 0 do
14 𝑡1 ← 𝛼 𝑡1;
15 end
16 // Perform root search and compute closest point
17 𝑡∗ ← BisectionRootSearch(𝑔, 𝑡0, 𝑡1, 𝜖);
18 𝑡∗ ← 𝑡∗

𝑠2 ;
19 x← 𝑡∗ (K + I)−1 z;
20 return x;

Algorithm 12: Numerical-Ellipsoid-Solver: Iterative numerical root search method for
computing the closest point on an ellipsoid.

4.1.4 The 𝑟 -Factor Strategies. If the 𝑟 -value is sufficiently low then the fixed point schemes
will converge as proven by Foerg et al. [2006]; Studer [2008]. Convergence speed is expected
to be worse for small 𝑟 -values than larger 𝑟 -values. Let us study a simple example to build
intuition about how different 𝑟 values affect the fixed point search. For simplicity we will study
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Fig. 29. Left figure illustrates the iterates of solving the 2D problem 𝜆 = proxS (𝜆 − 𝑟v) where S is a
2D disk for different 𝑟 -values. The iterates have been re-scaled by 𝑟/Δ to separate them into distinct
curves for better comparison. On the right the corresponding convergence is displayed. Observe that
the linear convergence rate constant depends on the 𝑟 -value. Notice that larger 𝑟 -values results in a
smaller constant.

a 2D disk S defined by the radius Δ ∈ R+. That is
S ≡ {𝝀 ∈ R2 | ∥𝝀∥ ≤ Δ} .

Then we iteratively compute

𝝀𝑘+1 ← proxS
(
𝝀𝑘 − 𝑟v

)
.

For a fixed given value of 𝑟 and v ≡
[
0 1

]𝑇 and 𝝀0 ≡
[
Δ 0

]𝑇 . The results of solving this
simple 2D example are shown in Figure 29. One can easily observe the benefit of larger 𝑟 -values
in this simple 2D example. A simple divergence example can be created as well by choosing S
to be the unit disk and solving

𝝀𝑘+1 ← proxS

(
𝝀𝑘 − 𝑟

( [
2 1
1 2

]
𝝀𝑘 +

[
−1
1

] ))
.

Using 𝝀0 ≡
[
0 1

]𝑇 results in the behaviors seen in Figure 30. Here we see the benefit of
increasing the 𝑟 -value. The iterations in this example are illustrated in Figure 31.
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Fig. 30. Left figure illustrates the iterates of solving the 2D problem 𝜆 = proxS (𝜆 − 𝑟 (A𝜆 + b)) where
S is a 2D unit disk for different 𝑟 -values. As one may observe the convergence behavior gets worse for
larger 𝑟 -values in that the iterates starts to oscillate wildly.

Fig. 31. From left to right: the starting iterate, the effect of the first iteration, the second iteration, and
finally a sequence of operations. Observe how the 𝑟 value always "push" the iterate the same distance
in the −v direction. Increase 𝑟 -value makes the iterations go faster to the north pole of the disk.

We may apply an adaptive back-tracking approach for adjusting the 𝑟 -values to auto-tune
the 𝑟 -value for better convergence behavior while solving for the fixed point of the proximal
operator. Regardless of chosen strategy, if we detect divergence while iterating, ie. the norm of
the residual

e𝑘+1 >
e𝑘 then we drop updating 𝝀𝑘+1. Instead we roll-back to 𝝀𝑘 and reduce

102



Contact and Friction Simulation SIGGRAPH ’21 Courses, August 09-13, 2021, Virtual Event, USA

all 𝑟 -values by a user specified fraction 𝜈 . We will next present three different strategies for
the 𝑟 -factors. We call these global, local and blocked strategies.
For the global 𝑟 -factor strategy we simply initialize all 𝑟 -values of all constraints to a single

global constant value. Ideally based on theory by Foerg et al. [2006] one should initialize this to
the reciprocal of the sum of the absolute values of the minimum and maximum eigenvalues of
A. However, these are not easily obtained and Erleben [2017] founds that simply hard wiring
the initial 𝑟 -value to say 5 works fine for his examples.
For the local 𝑟 -factor strategy one would initially choose the 𝑟 -value of the 𝑖th variable to be

𝑟𝑖 =
1
A𝑖𝑖

. (242)

Comparing this choice to the algebraic form of the variable updates used in PGS and PSOR we
immediately recognize this as using a PGS-strategy for setting the initial value. If one used
𝑟𝑖 =

𝜔
A𝑖𝑖

where𝜔 is the successive over-relaxation coefficient then the PSOR variant is achieved,
see Section 3.2 for derivation of PGS and PSOR. Hence, one may replace F𝑖 with a box-model
and keeping local 𝑟 -values as fixed constants and the PROX scheme will deteriorate into the
well known PGS/PSOR variants used in may physics engines.
For the blocked strategy the idea is to replace the scalar 𝑟 -values with small blocked matrices

build from the diagonal blocks of the A-matrix. Let us consider the 𝑘 th block corresponding to
the 𝑘 th contact, then the 𝑟 -factor strategy uses the block R𝑘 ∈ R4×4,

R𝑘 =
[ 1
A𝑖𝑖

0
0 A−1

𝑡 :𝜏,𝑡 :𝜏

]
, (243)

where 𝑛 = 4𝑘 , 𝑡 = 𝑛+1, 𝑏 = 𝑛+2, 𝜏 = 𝑛+3. The blocked strategy has been reported by Merlhiot
[2007] to work quite well.
For the global and blocked strategies one may use 𝜈 = 0.5 and for the local strategy 𝜈 = 0.9.

These values are not critical but was tuned experimentally and reported by Erleben [2017]. Note
𝑟 -factors are not the same as numerical damping or regularization as known from LCP methods
shown in Cottle et al. [1992]. For those the coefficient matrix is changed like A ← I𝜌 + A
for some damping parameter 𝜌 > 0. This changes the model and adds compliance to the
contact. The 𝑟 -factors does not change the model, the solutions hold for all positive 𝑟 -values.
The specific 𝑟 -value only affect the convergence constants. Erleben [2017] reports that local
𝑟 -value strategy combined with Gauss-Seidel type variant of PROX gives more predictable
performance in most cases, and that the global strategy for Jacobi scheme has interesting
capabilities for dealing with large structured stacks like masonry structures.

4.1.5 Time-Stepping Methods. The PROX schemes can be used with different time-stepping
methods. In this presentation we favor the mid-point scheme of Moreau [1999]. It consists of
using an explicit half-step position update

q𝑡+
1
2 = q𝑡 + ℎ

2
Hu𝑡 . (244)
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Then one computesM = M(q𝑡+ 1
2 ), J = J(q𝑡+ 1

2 ) and f = f (q𝑡+ 1
2 , u𝑡 ) and solves

𝜆 = PROX-SOLVER
(
q𝑡+

1
2 , u𝑡 , ℎ, . . .

)
, (245a)

u𝑡+1 = 𝑢𝑡 + ℎM−1f +𝑀−1J𝑇𝜆, (245b)

q𝑡+1 = q𝑡+
1
2 + ℎ

2
u𝑡+1, (245c)

where PROX-SOLVER (. . .) denotes invocation of the PROX scheme developed above, see
Algorithm 10 and 11. Previous work on interactive simulation by Erleben [2007] have used
a simple semi-implicit scheme . Here we favor the Moreau-variant due to the mid-point
evaluation adds some “softness” into how contact is detected compared to the simpler semi-
implicit scheme.

4.1.6 Constraint Stabilization by Post-step Projection. The velocity based formulation solves
constraints on a velocity-level, and this means that numerical drift will occur for position-level
constraints. Regardless of how many iterations are used, there will also be some inaccuracy in
the constraint impulses.
Stabilization can be used to reduce constraint errors. For instance, Baumgarte stabilization

adds a penalty term to the kinematic constraints, and a spring-based version of this stabilization
technique was presented in Section 1.9. Alternatively, the approach we derive here is similar
in spirit to the one proposed by Baraff [1993] and Cline and Pai [2003]. It uses a position-level
update as a post-step process to resolve the constraint errors, and we further demonstrate how
this can be formulated using the prox operator.
Consider a gap vector 𝝓 containing penetration errors for all contacts at the current time

step. We can compute a gap-displacement that corrects constraint errors as

Δ𝝓 = 𝝓∗ − 𝝓 ,
where 𝝓∗ are the corrected gap values without constraint violation. Given a finite displacement
of the bodies, Δq = q∗ − q, the first order relationship mapping body displacements to changes
in the gap values can be written as

Δg = JΔq . (246)
Observe that here we write the gap displacements using a vector notation. However, if we
only want to correct the penetration error for one contact, then the gap displacement vector
would reduce to the scalar 𝜙 .
From first-order physics, we have the equation of motion

MΔq = J𝑇d . (247)

In this formulation, d are the contact displacements and J𝑇 transforms the contact displacements
into body-displacements. The body-displacements are also weighted by the mass matrixM,
and this has the effect that linear contact displacements are distributed in a physical plausible
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way as linear and rotational displacements of the bodies. From the above equation of motion,
we can write the body-displacements as

Δq = M−1J𝑇d . (248)

Next, we substitute into our kinematic gap-equation to derive1

Δ𝝓 = JM−1J𝑇d . (249)

We seek a body displacement such that the gap-function becomes non-negative,

𝝓∗ = (Δ𝝓 + 𝝓) ≥ 0 . (250)

Recall that contact displacements can only “push” bodies apart, which means that d ≥ 0, and
furthermore we cannot have a contact displacement at a separated contact. Thus, we wish to
find a body displacement such that

(Δ𝝓 + 𝝓) ≥ 0, d ≥ 0 and d𝑇 (Δ𝝓 + 𝝓) = 0 . (251)

Combining these yields(
JM−1J𝑇d + 𝝓

)
≥ 0, d ≥ 0 and d𝑇

(
JM−1J𝑇d + 𝝓

)
= 0 , (252)

which is a linear complementarity problem. This can be re-cast as a proximal operator model

d = proxN
(
d − 𝑟

(
JM−1J𝑇d + 𝝓

))
(253)

for all 𝑟 > 0 whereN = N1× · · · ×N𝑛 . Having solved for d a position update can be performed.

q∗ = q + H(q)M−1J𝑇d . (254)

Recall thatH(q) is the kinematic mapping between velocities and positions. The above equation
can be seen as computing an instantaneous change of the body positions disregarding velocities,
external forces or velocity dependent forces. The scheme is of course based on a linearization
of the true gap-function. Therefore, it may not be able to resolve the errors with a single step
and quite often several steps must be taken.

4.2 Anisotropic Friction
The isotropic Coulomb friction model is used by many rigid body simulations in the field
of computer graphics [Bender et al. 2014], and indeed the focus of these has been on the
difficult problem of formulating and solving isotropic Coulomb frictional contact and its
approximations. However, there has been comparatively less attention in computer graphics
on more expressive anisotropic models of frictional contact. Nevertheless, various frameworks
have been developed in recent years for simulating anisotropic friction in computer graphics.
For instance, friction tensors [Pabst et al. 2009] and the Matchstick model [Erleben et al. 2020].
The methodology presented in this section is inspired by the latter.
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Fig. 32. The Matchstick model allows for control of frictional behavior in situations such as tire ground
contact, a hopper, and soft robotic gripping, where each example shown here also uses different
simulators with different contact solvers (Vortex, PROX, and Flex).

As shown in Section 1, many physics simulators use friction models expressed as cones
or as generic sets of feasible friction forces. Combining feasible set descriptions with extra
constraints, such as the principle of maximum dissipation, allows us to compute the friction
forces at a given instant in time. The benefit of such friction descriptions is that they permit an
easy implementation within a simulator. One can define a projection operator, and iteratively
project the friction force onto the closest feasible friction force. This property is the governing
principle about which many friction models can be defined.
The Matchstick model produces a cone based on surface structural directions from each

body at the point of contact. Figure 32 shows simulation examples using this model.

4.2.1 Friction Cone Modeling. We begin by examining how to generate an anisotropic friction
cone based on the kinematic state of two bodies, A and B. The main idea here is to create a
convex pointed cone based on the relative orientation between the two surfaces.
An important difference of anisotropic friction compared to isotropic friction is that the

local material frame of each surface is considered. For instance, with regards to the Matchstick
model, the structural directions on each surface are defined with respect to some material
frame. The directions can be interpreted as fiber directions or as micro-scale geometry features,
such as grooves. While other materials, e.g., cloth with warp and weft directions, can be seen
as having multiple material directions. For the sake of brevity, we limit our presentation to the
case of a single material direction.
For any given contact frame (see Figure 4), the material direction of each surface can be

written as unit vectors sA and sB, in the space of the tangent plane. These directions depend
on the point of contact on each surface, and in a typical implementation they can be stored in
a texture or generated procedurally. Given a simple parameterized cone generator, GA↔B, that
computes a friction cone that describes the set of allowable friction forces based on the set of
local parameters, we denote the generated cone by the symbol FA↔B. Relaxing the notation
and not explicitly writing the object pairs, the generator can be defined as

F ≡ G (𝜆�̂�, v𝑡 , sA(p), sB(p)) . (255)
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Fig. 33. The angle betweenmatchsticks determines the friction cone. TheMatchstickmodel interpolates
between isotropic C𝐼 and anisotropic C𝐴 extremes (see Equations 258, 261, and 264).

The normal force magnitude is given by 𝜆�̂�. The above parameterization could be extended
with even more parameters to account for other dependencies. However, F here simply refers
to any parametric friction cone model to enhance readability.

4.2.2 The Matchstick Model. Next, we derive the Matchstick model for the framework of
anisotropic friction outlined in the previous section. The model is a phenomenological one,
and it is based on several observations about how surfaces with structural features interact as
they slide against each other (see Figure 33). Briefly, the frictional behavior appears isotropic
for a pair of matchsticks when moving in different direction, but keeping structure directions
orthogonal. Whereas the behavior is anisotropic for a pair of matchsticks when sliding in
different directions while keeping structure directions parallel. The model thus interpolates
between isotropic and anisotropic Coulomb behaviors using the minimum angle between the
structural directions.
With the simplifying assumption that the sign of the structure vector s can be ignored (i.e., if

the friction only depends on the orientation and not the direction), then the Matchstick model
interpolation parameter is based on the angle 𝜃 , and it is defined as

𝑑 ≡ 1 − 2
𝜋

cos−1 |sA · sB |︸          ︷︷          ︸
≡𝜃

. (256)

Let the friction force in the world frame be given by f and let the coefficient of friction for a
planar isotropic Coulomb friction cone be 𝜇, equal to the tangent 𝑡 and binormal 𝑏 direction
coefficients for the isotropic cone, i.e.,

𝜇𝐼
𝑡
= 𝜇𝐼

𝑏
= 𝜇 , (257)
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then the isotropic cone is defined by the relationship

f𝑇R𝑇
[

1
𝜇

2 0
0 1

𝜇

2

]
︸    ︷︷    ︸
≡C𝐼

Rf ≤ 𝜆�̂�2 . (258)

Here, R can be any rotation matrix for an isotropic cone, but for consistency we define R as
the 2D rotation of (sA + sB) onto the 𝑡 axis, assuming that sA · sB is positive (given that only
the orientation is needed, we can swap the sign of one of the vectors to ensure positive dot
product). This implies that the tangent plane vectors are defined as

𝑡 ≡ sA + sB
∥sA + sB∥

, (259)

𝑏 ≡ �̂� × 𝑡 . (260)

By construction, 𝑡 and𝑏 are themajor andminor axis of the anisotropic ellipse cone, respectively.
And while the planar rotation matrix R is useful for explaining the model, the column vectors
𝑡 and 𝑏 are needed when assembling the Jacobian matrix.
For anisotropic Coulomb friction, the coefficients of friction are 𝜇𝐴

𝑡
≤ 𝜇𝐴

𝑏
, where the 𝐴

superscript denotes anisotropy. Similar to the isotropic case, the anisotropic cone is defined by
the quadratic inequality

f𝑇R𝑇


1
𝜇𝐴
𝑡

2 0

0 1
𝜇𝐴
𝑏

2

︸       ︷︷       ︸
≡C𝐴

Rf ≤ 𝜆�̂�2 . (261)

In the case of the Matchstick model, the friction cone generator G computes the coefficients
by a spherical linear interpolation between the isotropic and anisotropic cones, such that

𝜇𝑡 ≡ 𝑑 𝜇𝐴𝑡 + (1 − 𝑑) 𝜇 , (262)

𝜇
𝑏
≡ 𝑑 𝜇𝐴

𝑏
+ (1 − 𝑑) 𝜇 . (263)

Thus, the actual Coulomb cone based on the kinematic configuration is given by:

f𝑇R𝑇
[

1
𝜇𝑡

2 0
0 1

𝜇
𝑏

2

]
︸      ︷︷      ︸
≡C𝑀

Rf ≤ 𝜆2
𝑛 . (264)

The Matchstick friction model generator is outlined in Algorithm 13. A nice aspect about the
model is that it has a small memory footprint and fast computational complexity for generating
the cone and using it at run time. In the next section we will outline how the Matchstick model
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Data: Structure directions sA, sB, contact normal �̂�, isotropic friction 𝜇, extreme friction
coefficients 𝜇𝐴

𝑡
, 𝜇𝐴
𝑏
.

Result: Contact plane vectors 𝑡 , 𝑏, and coefficients of friction 𝜇𝑡 , 𝜇𝑏 .
1 if sA · sB < 0 then
2 sB ← −sB;
3 end
4 𝜃 ← cos−1 (sA · sB);
5 𝑑 ← 1 − 2𝜃

𝜋
;

6 𝜇𝑡 ← 𝑑 𝜇𝐴
𝑡
+ (1 − 𝑑) 𝜇;

7 𝜇
𝑏
← 𝑑 𝜇𝐴

𝑏
+ (1 − 𝑑) 𝜇;

8 𝑡 ← sA+sB
∥sA+sB∥ ;

9 𝑏 ← �̂� × 𝑡 ;

Algorithm 13: MatchStickFrictionGenerator The generator gives both the world
orientation of the friction cone as well as the coefficients of friction, which is an advantage
when working with an analytic cone that is fully described by these parameters.

can be incorporated into different modeling approaches and solvers, before we conclude our
presentation with some implementation notes. Thereby we demonstrate the Matchstick model
to be a general model suitable for any type of simulator.

4.2.3 Fixed-point Solvers. We will now present how the Matchstick model can be used in a
solver. Iterative methods for contact force computations are the natural choice for arbitrary
friction cones. We will first consider the class of methods based on proximal operators as
described in Section 4.1. In methods based on proximal operators, the next feasible friction
impulse iterate 𝝀𝑡𝑘+1 is given by projecting the current guess 𝝀𝑡𝑘 onto the friction cone, such
that

𝝀𝑡
𝑘+1 ← proxF

(
𝝀𝑡
𝑘 − 𝑟𝑡 v𝑡𝑘

)
, (265)

and tangential forces 𝝀𝑡 =
[
𝜆𝑡 𝜆

𝑏

]𝑇 are projected into the anisotropic cone

F ≡
{
𝝀𝑡

�����
(
𝜆2
𝑡

𝜇2
𝑡

+
𝜆2
𝑏

𝜇2
𝑏

)
≤ 𝜆�̂�2

}
. (266)

Here, 𝑘 is the iteration index and 𝑟𝑡 is a scalar relaxation parameter known as the 𝑟 -factor. The
algorithm then proceeds using a sweeping process. First, Equation 255 is used to instantiate
the current friction cone, F , and then that cone is used in the proximal point update given
by Equation 265. Algorithm 14 illustrates how a PROX-based block Gauss-Seidel variant is
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Data: Indices of all contacts K, indices of all bodies B, and J, M, b, 𝑟 , 𝝀0, 𝜈 .
Result: 𝝀𝑘

1

(
𝑘,𝝀𝑘 , 𝜖𝑘

)
←

(
0,𝝀0,∞

)
;

2 while not converged do
3 w← M−1 J𝑇𝝀𝑘 ;
4 foreach 𝑖 ∈ K do
5 I ≡ indices of block N𝑖, F𝑖 ;
6 zI ← 𝝀𝑘I − 𝑟 (JIBw + bI);
7 𝜆𝑘+1𝑛 ← proxN𝑖

(z𝑛);
8 F ← G(𝜆�̂�𝑘+1𝑖 , . . .);
9 𝝀𝑡

𝑘+1
𝑖 ← proxF

(
zF𝑖

)
;

10 w← w +
(
M−1J𝑇

)
BI

(
𝝀𝑘+1I − 𝝀𝑘I

)
;

11 end
12 𝜖𝑘+1 =

𝝀𝑘+1 − 𝝀𝑘∞;
13 if 𝜖𝑘+1 > 𝜖𝑘 then
14 𝑟 ← 𝜈𝑟 ;
15 else
16

(
𝝀𝑘 , 𝜖𝑘 , 𝑘

)
←

(
𝝀𝑘+1, 𝜖𝑘+1, 𝑘 + 1

)
;

17 end
18 end

Algorithm 14: ProxGaussSeidel The PROX Gauss-Seidel variant with an adaptive global
𝑟 -Factor strategy and parametric friction cones. The product M−1J𝑇 may be precomputed.

modified to accommodate such friction models. Observe that the only change is the addition of
line 8 in the algorithm, before the friction proximal step, which instantiates the friction model.

4.2.4 LCP-based Solvers. For LCP based approaches, one may discretize a parameterized cone
by shooting rays from the origin of the limit surface in various directions and use the limit
surface points to build a polygonal approximation to the generated cone, such as the one
shown in Figure 6. Each facet of the polyhedral cone will match one complementary constraint
in the LCP model. While it is trivial to generate the polygonal facets, the main drawback is
that one may need many facets to obtain a good approximation. The memory footprint of the
polyhedral LCP has quadratic scaling with the number of constraints and the solver time will
suffer accordingly. Hence, nonlinear complementary formulations can be more attractive for
parametric cones.
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4.2.5 NCP-based Solvers. Let us consider how to use a parameterized cone F in a Newton type
framework by using non-smooth functions, such as the Fischer-Burmeister function [Macklin
et al. 2019]. Without loss of generality, assume we have any type of complementary function,
𝜓 (𝑎, 𝑏) : R × R ↦→ R such that

0 ≤ 𝑎 ⊥ 𝑏 ≥ 0 ⇔ 𝜓 (𝑎, 𝑏) = 0 . (267)

Using an implicit limit surface of the cone we let 𝜂 be the corresponding implicit function of
F ,

𝜂 ≡ f𝑇R𝑇C𝑀Rf − 𝜆�̂�2. (268)

Then by the principle of maximal dissipation we can write

∇𝜂 (f) = −𝛽 v𝑡 , (269)

where 𝛽 ≥ 0 is an auxiliary scalar variable. We can now restate the model with the help of the
complementary function,

𝜓 (𝛽,−𝜂 (f)) = 0 , (270)

𝜓 (v𝑡𝑇v𝑡 ,w𝑇w) = 0 , (271)

where we now introducew = ∇𝜂 (f) +𝛽 v𝑡 . The above model gives us a root search problem and
can be solved with a Newton type of method. For this purpose we must obtain the generalized
Jacobian of these equations. The differential becomes

𝑑𝜓 (𝛽,−𝜂 (f)) = 𝜕𝑎𝜓 𝑑𝛽 − 𝜕𝑏𝜓 ∇𝜂𝑇𝑑f , (272)

𝑑𝜓 (v𝑡𝑇v𝑡 ,w𝑇w) = 2𝜕𝑎𝜓 v𝑡
𝑇𝑑v𝑡 + 2𝜕𝑏𝜓 w𝑇𝑑w , (273)

where
𝑑w = v𝑡 𝑑𝛽 + ∇2𝜂 𝑑f + 𝛽 𝑑v𝑡 . (274)

Here we use ∇2 to denotes the Hessian of 𝜂. Assembling all parts we can write[
𝑑𝜓 (𝛽,−𝜂 (f))
𝑑𝜓 (v𝑡𝑇v𝑡 ,w𝑇w)

]
= J𝜓


𝑑𝛽

𝑑f
𝑑v𝑡

 (275)

where J𝜓 is the Jacobian one will need for implementing a Newton method, and is computed as

J𝜓 ≡
[

𝜕𝑎𝜓 −𝜕𝑏𝜓 ∇𝜂𝑇 0
2
(
𝜕𝑏𝜓w𝑇v𝑡

)
2
(
𝜕𝑏𝜓w𝑇∇2𝜂

)
2
(
𝜕𝑎𝜓v𝑡𝑇 +𝜕𝑏𝜓w𝑇𝛽

) ] .
Figure 34 shows examples of Flex which uses a fully implicit solver based on a Newton

method using a Fischer-Burmeister formulation.
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Fig. 34. A structure field on a ravine slope can be used to steer a log slide towards (top) or around
(bottom) a cube-shaped building.

4.2.6 Implementation Notes. Notice that a friction cone generator G, such as the one in
Algorithm 13, returns not only a friction cone F , but also the cone orientation C ≡

[
�̂� 𝑡 𝑏

]
.

Here, C is needed for the assembly of the contact Jacobian, as is evident from Equation 22.
Hence, one may wish to invoke the generator when assembling the contact Jacobian or split
the generator implementation into two sub-routines– one for computing the cone and one for
determining the contact frame. The choice is intimately related to how the time-discretization
of the friction cone is implemented. Imagine that the cone generator parametrically depends
on the sliding velocity v𝑡 and that a fully implicit integration scheme is wanted. In this case,
the generator truly needs to be invoked each time before projecting 𝝀𝑡 to the cone. However,
in most cases the positions and orientations are not updated inside the solver algorithm as
shown in Algorithm 14, and both the cone orientation and limit surface can be computed
outside the solver for improved computational efficiency. However, for the Newton type solver
outlined above, one must update cone orientations continuously as positions and velocities
are solved in a fully coupled way, which gives a fully implicit time-integration method.
We note that an additional torque can be included in the friction model, which introduces an

angular moment about the contact normal based on an additional friction coefficient, 𝜇𝜏 . The
value of this coefficient is computed similar to 𝜇𝑡 and 𝜇𝑏 , and this type of torsional friction
is also known as a Coulomb–Contensou friction model. Inclusion of this torque is optional
from a modeling perspective, but does result in a higher-dimensional limit surface, and thus
requires a third diagonal term in C as 1

𝜇𝜏

2, thus promoting R to a 3D rotation matrix. The
proximal operator for this surface can then be solved numerically, as outlined in Section 4.1.3,
whereas omitting this additional term gives a planar surface and the projection can be solved
analytically.
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4.3 Penalty Methods
Solid objects in the real world do not penetrate each other. The constraint-based formulations
of contact that we have considered so far try to eliminate any penetration between bodies
by applying an impulse at the point of contact. In penalty-based methods, the goal is similar.
However, rather than computing constraint impulse, a spring-damper system is used for
penalizing penetrations. A spring-damper system behaves like a harmonic oscillator in classical
mechanics as such the trick is often to tune stiffness and damping parameters to get a critical
damped system. Penalty methods have a lot in common with mass-spring systems because
all effects are modeled by springs and dampers and they are generally applicable to both
deformable and rigid objects. Spring-damper models are even found in biomechanical muscle
models, such as Hill’s muscle model and Zajac’s force model used in Chen and Zeltzer [1992],
and even Baumgarte stabilization may be interpreted as a spring-damper system, as we showed
in Section 1.9. Hence, it is quite a general purpose modeling tool for many things.
The central idea behind penalty methods is to find a force f and torque 𝜏 at a given instant

that can be included in the dynamical equations of motion in order to perform the numerical
integration. These forces and torques include contributions from external forces, such as gravity,
as well as contact forces stemming from interaction with other rigid bodies. Specifically, with
regards to contact, forces are generated by springs with zero rest-length that are inserted at
all penetrations. Larger penetrations produced larger spring forces, and thus springs penalize
penetrations. Hence the name penalty method. The contact force from each point of contact is
thus computed as a spring force.

4.3.1 Rigid Bodies. Consider a rigid body A that penetrates another rigid body B. The spring
force f spring

𝑘
acting at the 𝑘 th contact point will give rise to correspond torque term, 𝜏 spring

𝑘
,

acting on the rigid body. Let the vector arm from center of mass of 𝐴 to the contact point be
given by r𝑘,𝐴, and the resulting torque is computed as

𝜏
spring
𝑘

≡ r𝑘,𝐴 × f spring𝑘
. (276)

To use the penalty method, one would simply add up all the penalty forces and add them to
the generalized force vector in the equations of motion Equation 2, such that

f =

[
fext +∑

𝑘 f
spring
𝑘

𝜏ext +∑
𝑘 𝜏

spring
𝑘

]
. (277)

Here, the external forces and torques are given by fext and 𝜏ext, and without loss of general-
ization we consider the effect of the gyroscopic forces to be included in the external torque
component.
Recalling there are two bodies in contact, there is a similar force term acting on the opposing

body B at the 𝑘 th contact. Due to Newton’s second law, the spring force on that body is equal
in magnitude, but opposite in direction. In a practical implementation, one would iterate over
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contact points and compute the penalty force only once per contact and then distribute the
spring force to the two bodies that are in contact. In its most pure form the simulation loop of
the penalty method can now be summarized as

• Detect contact points (run collision detection).
• Compute and accumulate spring forces.
• Integrate equations of motion forward in time.

This is the pure form of the penalty method. In practice, it is combined with several other
techniques, some of which we will elaborate on below.
First we will turn our attention toward the actual computation of the penalty forces in a

general simulator. Let the 𝑘 th contact point between the two bodies 𝐴 and 𝐵 with center of
mass at x𝐴 and x𝐵 respectively be at position p𝑘 given in 3D world coordinates. The 𝑘 th contact
point has the contact normal, n𝑘 , also in 3D world space, pointing from body 𝐴 toward body 𝐵,
and a measure of penetration depth, 𝜙𝑘 . Then the penalty force acting on body 𝐵 is given by

f spring
𝐵

= (−𝑘𝜙𝑘 − 𝑏v𝑘 · �̂�𝑘) �̂�𝑘 , (278)

where v𝑘 denotes the relative contact velocity at the 𝑘 th contact point. Observe, that the
penalty force here only works in the normal direction of the contact. Hence, we are currently
ignoring friction. The coefficients 𝑘 and 𝑏 are known as the stiffness and damping coefficients,
sometimes the stiffness coefficient is referred to as the spring constant as well. The term v𝑘 · �̂�𝑘
is essentially only measuring the relative velocity in the normal direction, let us define this
as 𝑣�̂�,𝑘 = v𝑘 · �̂�𝑘 . For 𝑣�̂�,𝑘 < 0 objects are approaching each other, 𝑣�̂�,𝑘 = 0 there is no relative
movement, and if 𝑣�̂�,𝑘 > 0 objects are moving away from each other. Notice how carefully
the viscosity is modeled only to work in the direction of the contact normal to ensure that
damping should only work in the constraint direction. We may compute 𝑣�̂�,𝑘 like this

𝑣�̂�,𝑘 = �̂�𝑘 ·
( (
v𝐴 + 𝜔𝐴 × r𝑘,𝐴

)
−

(
v𝐵 + 𝜔 𝑗 × r𝑘,𝐵

) )
, (279)

= �̂�𝑇
𝑘

[
I3×3 −r×𝑘,𝐴 −I3×3 r×

𝑘,𝐵

]︸                                ︷︷                                ︸
J𝑘


v𝐴
𝜔𝐴
v𝐵
𝜔𝐵

︸︷︷︸
u

= J𝑘u , (280)

where r𝑘,𝐴 = p𝑘 − x𝐴 and r𝑘,𝐵 = p𝑘 − x𝐵 . We have seen this before in Equation 17, and if we
had a soft body instead of a rigid body then the normal relative velocity can be computed as
we did in Equation 20. If we write up the magnitude of the spring force as

𝜆�̂�,𝑘 ≡ −𝑘𝜙𝑘 − 𝑏 ¤𝜙𝑘 . (281)
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Here, we use the substitution that ¤𝜙𝑘 = 𝑣�̂�,𝑘 and with this notation in place we can write the
spring forces and torques on body A and B as follows:

f spring
𝐴

𝜏
spring
𝐴

f spring
𝐵

𝜏
spring
𝐵


=


−�̂�𝑘𝜆�̂�,𝑘

−r𝑘,𝐴 × �̂�𝑘𝜆�̂�,𝑘
�̂�𝑘𝜆�̂�,𝑘

r𝑘,𝐴 × �̂�𝑘𝜆�̂�,𝑘

 = −J𝑇
𝑘
𝜆�̂�,𝑘 . (282)

It is interesting to generalize Equation 279 and Equation 282 to a system with multiple bodies
and multiple contacts. Hence, let us do this. We obtain,

¤𝝓 = Ju , (283a)
𝝀 = −K𝝓 − B ¤𝝓 , (283b)

M ¤u = f + J𝑇λ , (283c)
here K is a diagonal matrix with stiffness coefficients, B a diagonal matrix with damping
coefficients, and λ is a vector of spring force magnitudes. The vector u is the generalized
velocities andM is the mass matrix, and J is the system Jacobian matrix. If we have 𝐾 contacts
and 𝑁 rigid bodies then 𝝓, ¤𝝓,λ ∈ R𝐾 , and f, u ∈ R6𝑁 , J ∈ R𝐾×6𝑁 , M ∈ R6𝑁×6𝑁 , and K,B ∈
R𝐾×𝐾 .

4.3.2 Soft Bodies. In case of soft bodies, dimension 6𝑁 is replaced with 3𝑉 , where 𝑉 is
the total number of vertices in the system. However, note that for soft bodies, there is no
torque component generated by the spring forces (meaning the last row of Equation 277 is
dropped). Also note that for soft bodies, the contact point may not coincide with a node of the
computational mesh. In this case, the penalty force is often distributed to the enclosing nodes
of the contact point using some weighting scheme. The most common choice for computer
graphics is to use linear weights based on the barycentric coordinates of the nodes. With these
considerations, it is trivial to perform a time-discretization to Equation 283 in order to solve
this system of ordinary differential equations. Xu et al. [2014] showed how to take the ideas
we presented here into an implicit time-stepping scheme.

4.3.3 Implementation Notes. It is quite interesting to compare the penalty method algebraic
form given in Equation 283 with that of a constraint based method. We observe that the
J-matrices appear in similar places, but 𝝀 is now given by a closed-form solution. The spring
force, or rather impulses, are simply computed by evaluating Equation 283 at the instant
corresponding to the chosen time-stepping scheme. Hence, the per-time-step complexity of the
penalty method is very fast compared to solving an LCP problem per time-step. Furthermore,
in most implementations of the penalty method, the above matrices are not assembled, which
further reduces the computational and storage complexity. Yet the algebraic form here provides
a straightforward connection to the constraint based approaches that we have already covered
in full detail.
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There are, however, several difficulties associated with the classical penalty method. These
are listed below without going into details about possible solutions:
• It is not trivial to compute satisfactory contact normals or penetration depths as they lack
global knowledge about the entire state. The problem of determining meaningful contact
normals and penetration depths is mostly caused by the use of local computations. If a
global computation [Kim et al. 2002] is used instead, these problems can be resolved.
• Some contact points like the face-face case appearing in a box stack is difficult to handle
by applying a penalty force at the contact point of deepest penetration [Hasegawa et al.
2003]. To alleviate this problem, researchers have tried to sample the entire contact region
with contact points. There also exist methods, that integrate over the intersection area
and/or volume.
• During motion, there can be a discontinuous changes of the contact normals.
• It is not trivial to pick the stiffness and damping parameters. Stiffness parameter need to
be large enough to remove any penetration. Unfortunately, this value limits the time-step
size severely for explicit time-stepping methods.
• The springy nature of the contact forces can create secondary oscillation effects that leads
to a more “spongy” contact behavior than the hard contact response that is expected from
rigid bodies.

4.3.4 Penalty Based Friction. Until now, we have only been concerned with generating non-
interpenetration forces using penalty methods. How should one go about modeling friction in
a penalty-based simulator? It seems reasonable to use a spring-damper system for the friction
force as well. This is often done by tracking the contact points. At first point of contact, an
anchor point a, is saved. This is an unmovable point in the world coordinate system. The
friction force is determined by the spring force stemming from the zero-length spring with
stiffness coefficient 𝑘 between the anchor point and the current position p of the contact point
that caused the creation of the anchor point:

f springfriction = 𝑘 (a − p) . (284)

The value of the friction stiffness coefficient it typically different from the value of the normal
stiffness coefficient. During subsequent time steps, the simulation is monitored to ensure the
following condition holds: f springfriction

 ≤ 𝜇f spring , (285)

here, 𝜇 is the Coulomb coefficient of friction and f spring is the normal penalty force. If the
condition is fulfilled, we have the case of static friction and nothing needs to be done. If, on
the other hand, the condition is broken, then we have the case of dynamic friction (sliding)
and the anchor point is moved towards the current contact position p such that the condition
in Equation 285 is true.
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The frictional spring force model can be physically justified as a crude model of the external
shear stresses acting between two bodies. As such, the friction model adds an element
of compliance to the rigid bodies. Another approach to model friction is as a damping
force [McKenna and Zeltzer 1990], like this,

f springfriction = −𝜇
f spring v𝑡

∥v𝑡 ∥
, (286)

where v𝑡 is the tangential relative sliding velocity. This approach only models dynamic friction,
thus static friction is ignored.

4.3.5 Other Penalty Methods. We will now briefly survey a few of the usual tricks and ideas
that have been used in the context of penalty methods over the years in the field of computer
graphics. Our coverage is not complete but most central ideas are represented. Moore and
Wilhelms [1988] were among the first to model contact forces by springs in computer animation.
They used a simple linear spring, but added a twist of letting the spring constant depend on
whether the motion is receding or approaching. The relationship is as follows

𝑘recede = 𝜀𝑘approach , (287)
where 𝜀 describes the elasticity of the collision, 𝜀 = 0 corresponds to totally inelastic collisions,
and 𝜀 = 1 to perfectly elastic collisions. Furthermore, Moore and Wilhelms extended the
penalty method with an algebraic collision resolving method, similar to Newton’s collision
law. The main idea is to handle colliding contacts before applying springs. This is because
colliding contacts requires very stiff springs, which are numerically intractable.
Terzopoulos et al. [1987] used another kind of penalty force. The main idea behind their

derivation comes from conservative forces, which are known to be the negative gradient of a
energy potential, that is the negative gradient of a scalar function. A scalar energy function is
then designed that penalizes penetration, such that

𝑐 exp
(
−𝜙
𝜀

)
, (288)

where 𝑐 and 𝜀 are constants used to determine the specific shape of the energy potential. The
penalty force is then computed as

f spring = −
(
∇𝜙
𝜀

exp
(
−𝜙
𝜀

)
· �̂�

)
�̂� . (289)

Such penalty forces are called exponential springs. Exponential springs are stiffer for large
displacement than linear springs, which can quickly lead to stability problems for explicit
integration schemes. However, for small displacements exponential springs are less stiff than
linear springs [McKenna and Zeltzer 1990].
McKenna and Zeltzer [1990] introduce a twist on penalty forces for modeling collisions that

is inspired by Newton’s impact law, relating pre- and post velocities through a coefficient of
restitution, 𝜀. A value of zero for the coefficient corresponds to completely inelastic collisions,
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and a value of 1 corresponds to fully elastic collisions. For contacts where the bodies are
moving away from each other, the penalty force is multiplied by 𝜀, such that

f spring ←
{
𝜀 f spring if 𝜙 < 0 and 𝑣�̂� > 0
f spring otherwise

. (290)

In Jansson and Vergeest [2003], a mass-spring model is used for modeling both rigid and
deformable objects, here simple springs are created when particles move within a nominal
distance, and springs are deleted again when their incident particles move further away than a
given fracture distance. The spring force is simply modeled as

F = −𝑘
(x𝑖 − x 𝑗 − 𝑙 ) x𝑖 − x 𝑗x𝑖 − x 𝑗 , (291)

where 𝑘 is the spring constant, x𝑖 and x 𝑗 are the particle positions, and 𝑙 is the nominal distance.
Details for determining nominal and fracture distances can be found in Jansson and Vergeest
[2002]. Hence, there is no need for contact points in the traditional sense, and instead contact
points are simply particle pairs.
Penalty methods are popular for differentiable simulators too as they provide differentiable

forces. Here we briefly describe the approach in Macklin et al. [2020b]. One view of penalty
forms of contact is as a regularization of the complementarity form of the non-penetration
constraint. Penalty methods of contact associate a stiff potential with the non-penetration
constraint. In the simplest case this is a quadratic function of the clamped constraint error,

𝑈 (q) ≡ 1
2
𝑘𝑛min(0, 𝜙)2 . (292)

The associated (non-smooth) force due to this potential:
f spring ≡ −𝑘𝑛 J𝑇min(0, 𝜙) (293)

where 𝑘𝑛 controls the stiffness of the contact. We observe that as 𝑘𝑛 →∞ it approaches a hard
constraint limit. One advantage of penalty based approaches is that they can easily support
nonlinear contact models. For example, applying a simple exponentiation with 𝑝 ≥ 1 gives the
exponential spring equation

f spring ≡ −𝑘𝑛 J𝑇min(0, 𝜙)𝑝 , (294)
which produces smooth contact forces with continuous derivatives. Similar modeling was done
by Geilinger et al. [2020] and found to perform better than other regularized complementarity
models.
A regularized form of Coulomb friction may be expressed as the derivative of the following

dissipative potential in terms of the slip velocity,

𝑈 𝑓 (q) ≡
{

1
2𝑘 𝑓 ∥v𝑡 ∥

2 𝑘 𝑓 ∥v𝑡 ∥ < 𝜇
f spring

𝜇
f spring∥v𝑡 ∥ − 𝛾 otherwise

, (295)
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where the parameter 𝑘 𝑓 controls stiffness in the “stick” regime, and 𝛾 is a constant to make
the potential have C0 continuity. Since we only ever evaluate the potential’s gradient, 𝛾 may
generally be ignored. This potential is quadratic around the origin and is linear past a certain
point (in the slip regime). The force for this potential is

f springfriction ≡ −min

(
𝑘 𝑓 , 𝜇

f spring
∥v𝑡 ∥

)
v𝑡 , (296)

which in 1D looks like the relaxed step function.
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